Applied Biochemistry and Biotechnology

, Volume 77, Issue 1–3, pp 169–179 | Cite as

Isolation and analysis of tetraheme-bound-cytochrome from photosynthetic reaction centers of Rhodopseudomonas viridis

  • Chikashi NakamuraEmail author
  • Miki Hasegawa
  • Masayuki Hara
  • Jun Miyake


A tetraheme cytochrome (BCytc) was isolated from the photosynthetic reaction centers (RC) of Rhodopseudomonas viridis while maintaining the redox activity. BCytc was removed from the H-subunit-detached RC by polyacrylamide electrophoresis using an alkyl ether sulfate mixed with sodium dodecyl sulfate. Redox titration of BCytc showed a simple one-step redox titration curve and a lowered midpoint potential than that of one in RC. Direct electron transfer between BCytc and electrode surfaces, such as indium tin oxide, was successfully performed, indicating a potential for molecular electronic material.

Index Entries

Tetraheme cytochrome surfactant photosynthetic reaction center photosynthetic bacterium 



the bound cytochrome c


photosynthetic reaction centers


H-subunit-detached RC


sodium polyoxyethylene alkyl ether sulfate


Sodium dodecyl sulfate






tetranitro tetrazolium blue




phenazine methosulfate


indium tin oxide


standard hydrogen electrode


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Higuchi, Y., Kusunoki, M., Matsuura, Y., Yasuoka, N., and Kakudo, M. (1984), J. Mol. Biol. 172, 109–139.CrossRefGoogle Scholar
  2. 2.
    Pierrot, M., Haser, R., Frey, M., Payan, F., and Astier, J. (1982), J. Biol. Chem. 257, 14,341–14,348.Google Scholar
  3. 3.
    Haser, M., Pierrot, M., Frey, M., Payan, F., Astier, J. P., Bruschi, M., and Gall, L. (1979), Nature 282, 806–810.CrossRefGoogle Scholar
  4. 4.
    Nitschke, W. and Dracheva, S. M. (1995), in Anoxygenic photosynthetic bacteria, vol. 2, Blankenship, R. E., Madigan, M. T., and Bauer, C. E. (eds.), Kluwer, Dordrecht, pp. 775–805.Google Scholar
  5. 5.
    Deisenhofer, J., Epp, O., Miki, K., Huber, R., and Michel, H. (1985), Nature 318, 618–624.CrossRefGoogle Scholar
  6. 6.
    Seibert, M. and Kendall-Tobais, M. W. (1982), Biochim. Biophys. Acta 681, 504–511.CrossRefGoogle Scholar
  7. 7.
    Alegria, G. and Dutton, P. L. (1991), Biochim. Biophys. Acta. 1057, 258–272.CrossRefGoogle Scholar
  8. 8.
    Dracheva, S. M., Drachev, L. A., Konstantinov, A. A., Semenov, A. Y., Skulachev, V. P., Arutjunjan, A. M., Shuvalov, V. A., and Zaberezhnaya, S. M. (1988), Eur. J. Biochem. 171, 253–264.CrossRefGoogle Scholar
  9. 9.
    Fritz, F., Moss, D. A., and Mantele, W. (1992), FEBS Lett. 297, 167–170.CrossRefGoogle Scholar
  10. 10.
    Fritzsch, G., Buchanan, S., and Michel, H. (1989), Biochim. Biophys. Acta. 977, 157–162.CrossRefGoogle Scholar
  11. 11.
    Nitschke, W. and Rutherford, A. W. (1989), Biochem. 28, 3161–3168.CrossRefGoogle Scholar
  12. 12.
    Majima, T., Miyake, J., Hara, M., Ajiki, S., Sugino, H., and Toyotama, H. (1989), Thin Solid Films 180, 85–88.CrossRefGoogle Scholar
  13. 13.
    Weyer, K. A., Schafer, W., Lottspeich, F., and Michel, H. (1987), Biochemistry 26, 2909–2914.CrossRefGoogle Scholar
  14. 14.
    Miyake, J., Hara, M., Asada, Y., Morimoto, Y., and Shirai, M. (1998), Electrophoresis 19, 319–322.CrossRefGoogle Scholar
  15. 15.
    Hara, M., Kaneko, T., Nakamura, C., Asada, Y., and Miyake, J. (1998), Biochim. Biophys. Acta 1363, 199–208.CrossRefGoogle Scholar
  16. 16.
    Miyake, J. and Kawamura, S. (1987), Int. J. Hydrogen Energy 12, 147–149.CrossRefGoogle Scholar
  17. 17.
    Jacob, J. S. and Miller, K. R. (1983), Arch. Biochem. Biophys. 223, 282–290.CrossRefGoogle Scholar
  18. 18.
    Laemmli, U. K. (1970), Nature 227, 680–685.CrossRefGoogle Scholar
  19. 19.
    Bradford, M. M. (1976), Anal. Biochem. 72, 248–254.CrossRefGoogle Scholar
  20. 20.
    Thomas, P. E., Ryan, D., and Levin, W. (1976), Anal. Biochem. 75, 168–176.CrossRefGoogle Scholar
  21. 21.
    Ohbu, K., Jona, J., Mizushima, N., and Kashiwa, I. (1980), Yukagaku 29, 866–871.Google Scholar
  22. 22.
    Takagi, T. (1988), Yukagaku 37, 402–407.Google Scholar
  23. 23.
    Takagi, T. (1991), Adv. Electrophoresis 41, 391–406.Google Scholar
  24. 24.
    Koide, M., Fukuda, M., Ohbu, K., Watanabe, Y., Hayashi, Y., and Takagi, T. (1987), Anal. Biochem. 164, 150–155.CrossRefGoogle Scholar
  25. 25.
    Meyer, T. E., Bartsch, R. G., Cusanovich, M. A., and Tollin, G. (1993), Biochem. 32, 4719–4726.CrossRefGoogle Scholar
  26. 26.
    Sagara, T., Nakajima, S., Akutsu, H., and Niki, K. (1991), J. Electroanal. Chem. 297, 271–282.CrossRefGoogle Scholar
  27. 27.
    Hagen, W. R. (1989), Eur. J. Biochem. 182, 523–530.CrossRefGoogle Scholar
  28. 28.
    Niki, K., Kawasaki, K., Nishimura, N., Higuchi, Y., Yasuoka, N., and Kakudo, M. (1984), J. Electroanal. Chem. 168, 275–286.CrossRefGoogle Scholar
  29. 29.
    Fan, K., Akutsu, H., Kyogoku, Y., and Niki, K. (1990), Biochemistry 29, 2257–2263.CrossRefGoogle Scholar
  30. 30.
    Niki, K., Yagi, T., Inokuchi, H., and Kimura, K. (1977), J. Electrochem. Soc. 124, 1889–1891.CrossRefGoogle Scholar
  31. 31.
    Moreno, C., Campos, A., Teixeira, M., Legall, J., Montenegro, M. I., Moura, I., Dijk, C. V., and Moura, G. J. (1991), Eur. J. Biochem. 202, 385–393.CrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 1999

Authors and Affiliations

  • Chikashi Nakamura
    • 1
    Email author
  • Miki Hasegawa
    • 1
  • Masayuki Hara
    • 1
  • Jun Miyake
    • 1
  1. 1.National Institute for Advanced Interdisciplinary Research, Agency of Industrial Science and TechnologyMinistry of International Trade and IndustryHigashi, TsukubaJapan

Personalised recommendations