Applied Biochemistry and Biotechnology

, Volume 77, Issue 1–3, pp 147–157 | Cite as

Evaluation of recombinant strains of Zymomonas mobilis for ethanol production from glucose/xylose media

  • Eva Joachimsthal
  • Kevin D. Haggett
  • Peter L. RogersEmail author


The fermentation characteristics of two recombinant strains of Zymomonas mobilis, viz. CP4 (pZB5) and ZM4 (pZB5), capable of converting both glucose and xylose to ethanol, have been characterized in batch and continuous culture studies. The strain ZM4 (pZB5) was found to be capable of converting a mixture of 65 g/L glucose and 65 g/L xylose to 62 g/L ethanol in 48h with a yield of 0.46 g/g. Higher sugar concentrations resulted in incompletexylose utilization (80h) presumably owing to ethanol inhibition of xylose assimilation or metabolism. The fermentation results with ZM4 (pZB5) show a significant improvement over results published previously for recombinant yeasts and other bacteria capable of glucose and xylose utilization.

Index Entries

Recombinant Zymomonas mobilis xylose fermentation lignocellulosic hydrolysates ethanol production 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Toon, S., Philippidis, G. P., Ho, N. W. Y., Chen, Z. D., Brainard, A., Lumpkin, R. E., and Riley, C. J. (1996), Appl. Biochem. Biotechnol. 63/65, 243–255.Google Scholar
  2. 2.
    Lindsay, S. E., Bothast, R. J., and Ingram, L. O. (1995), Appl. Microbiol. Biotechnol. 43, 70–75.CrossRefGoogle Scholar
  3. 3.
    Ohta, K., Beall, D. S., Meijia, J. P., Shannugan, T., and Ingram, L. O. (1991), Appl. Env. Microbiol., 57, 2810–2815.Google Scholar
  4. 4.
    Zhang, M., Eddy, C., Deanda, K., Finkelstein, M., and Picataggio, S. (1995), Science 267, 240–243.CrossRefGoogle Scholar
  5. 5.
    Rogers, P. L., Lee, K. J., and Tribe, D. E. (1979), Biotech. Lett. 1, 165–170.CrossRefGoogle Scholar
  6. 6.
    Lee, K. J. and Rogers, P. L. (1983), Chem. Eng. J. 27, B31–38.CrossRefGoogle Scholar
  7. 7.
    Lawford, H. G. and Stevnsborg, N. (1986), Biotechnol. Bioeng. Symp. 17, 209–219.Google Scholar
  8. 8.
    Lawford, H. G., Rousseau, J. D., and McMillan, J. D. (1997), Appl. Biochem. Biotechnol. 63/65, 269–286.Google Scholar
  9. 9.
    Warr, R. G., Goodman, A. E., Rogers, P. L., and Skotnicki, M. L. (1984) Microbios 41, 71–78.Google Scholar
  10. 10.
    Rogers, P. L. and Tribe, D. E. (1983), Ethanol Production. US Patent No. 4,403,034.Google Scholar
  11. 11.
    Rogers, P.L. and Tribe, D.E. (1984), Semibatch Ethanol Production, US Patent No. 4,443,543.Google Scholar
  12. 12.
    Rogers, P. L. and Tribe, D. E. (1984), Ethanol Production in a Continuous Process with Cell Recycle. US Patent No. 4,443,544.Google Scholar
  13. 13.
    Lawford, H. G., Rousseau, J. D., Mohagheghi, A., and McMillan, J. D. (1998), Appl. Biochem. Biotechnol. 70/72, 353–367.CrossRefGoogle Scholar
  14. 14.
    Lawford, H. G. and Rousseau, J. D. (1999), Appl. Biochem. Biotechnol. 77–79, 235–249.CrossRefGoogle Scholar
  15. 15.
    Beyeler, W., Rogers, P. L., and Fiechter, A. (1984) Appl. Microbiol. Biotechnol. 19, 277–280.CrossRefGoogle Scholar
  16. 16.
    Rogers, P. L., Joachimsthal, E. L., and Haggett, K. D. (1997), Australasian Biotechnol. 7, 304–309.Google Scholar

Copyright information

© Humana Press Inc. 1999

Authors and Affiliations

  • Eva Joachimsthal
    • 1
  • Kevin D. Haggett
    • 1
  • Peter L. Rogers
    • 1
    Email author
  1. 1.Department of BiotechnologyUniversity of New South WalesSydneyAustralia

Personalised recommendations