Advertisement

Applied Biochemistry and Biotechnology

, Volume 76, Issue 3, pp 193–201 | Cite as

Anaerobic upflow fixed-film bioreactor for biomethanation of salty cheese whey

  • Priti Patel
  • Chirag Patel
  • Datta Madamwar
Article

Abstract

In order to develop a suitable reactor for the biomethanation of high-strength salty cheese whey, the performance of anaerobic upflow fixed-film reactors packed with different support materials, such as charcoal, gravel, brick pieces, pumicestones, and PVC pieces, has been studied. The charcoal-bedded reactor gave the best performance, with the maximum gas production (3.3 L/L digester/d) and an enriched methane content (69% CH4). Temperature and hydraulic retention time were optimized, with the ultimate aim of improving biomethanation. Maximum gas production (3.3 L/L digester/d) was achieved at a hydraulic retention time of 2 d at 40°C.

Index Entries

Salty cheese whey biomethanation anaerobic digestion methane energy fixed-film bioreactor charcoal 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Guiot, S. R., Safi, B., Frigon, P. M., Mulligan, C., Tremblay, R., and Samson, R. (1995), Biotechnol. Bioeng. 45, 398–405.CrossRefGoogle Scholar
  2. 2.
    Yan, J. Q., Lo, K. V., and Liao, P. H. (1989), Biol. Wastes 27, 289–305.CrossRefGoogle Scholar
  3. 3.
    Desai, M., Patel, V., and Madamwar, D. (1994), Environ. Pollution 83, 311–315.CrossRefGoogle Scholar
  4. 4.
    Patel, P., Desai, M., and Madamwar, D. (1995), J. Ferment. Bioeng. 79, 398–399.CrossRefGoogle Scholar
  5. 5.
    Balaguer, M. D., Vicent, M. T., and Paris, J. M. (1991), Environ. Technol. 12, 1167–1173.CrossRefGoogle Scholar
  6. 6.
    Callender, I. J. and Barford, J. P. (1983), Proc. Biochem. 18, 24–30.Google Scholar
  7. 7.
    Denac, M. and Dunn, I. J. (1988), Biotechnol. Bioeng. 32, 159–173.CrossRefGoogle Scholar
  8. 8.
    Liao, P. H. and Lo, K. V. (1985), Biotechnol. Bioeng. 27, 266–272.CrossRefGoogle Scholar
  9. 9.
    Murray, W. D. and van den Berg, L. (1981), Appl. Environ. Microbiol. 42, 502–505.Google Scholar
  10. 10.
    Sarner, E. (1995), Vatten 51, 304–313.Google Scholar
  11. 11.
    Keith, B. and Tom, S. (1996), Biotechnol. Bioeng. 49, 601–610.CrossRefGoogle Scholar
  12. 12.
    Backus, B. D., Clanton, C. J., Goodrich, P. R., and Morris, H. A. (1988), Trans. ASAE 31, 1274–1283.Google Scholar
  13. 13.
    American Public Health Association (1989), Standard Methods for the Examination of Water and Wastewater, 17th ed. American Public Health Association, Washington, D.C.Google Scholar
  14. 14.
    Ranade, D. R. and Gadre, R. V. (1988), in Microbiological Aspects of Anaerobic Digestion, Laboratory Manual, Ranade, D. R. and Gadre, R. V., eds. Maharashtra Association for the Cultivation of Science, Pune, India, pp. 79–93.Google Scholar
  15. 15.
    Andrews, G. F. and Tien, C. (1981), Al. Chem. J. 27, 396–402.Google Scholar
  16. 16.
    Madamwar, D., Patel, V., and Patel, A. (1992), Bioresource Technol. 40, 179–181.CrossRefGoogle Scholar
  17. 17.
    De Beer, D., Huisman, J. W., Heuuel, V., and Ottengraf, S. P. P. (1992), Water Res. 26, 1329–1336.CrossRefGoogle Scholar
  18. 18.
    Britz, T. J. and Van der Merwe, W. (1993), Biotech. Lett. 15, 755–760.CrossRefGoogle Scholar
  19. 19.
    Cobb, S. A. and Hill, D. T. (1991), Trans. ASAE 34, 2564–2571.Google Scholar
  20. 20.
    Wildenauer, F. X. and Winter, J. (1985), Appl. Microbiol. 22, 367–372.Google Scholar
  21. 21.
    Pfeffer, J. T. (1974), Biotechnol. Bioeng. 16, 771–787.CrossRefGoogle Scholar

Copyright information

© Humana Press Inc 1999

Authors and Affiliations

  • Priti Patel
    • 1
  • Chirag Patel
    • 1
  • Datta Madamwar
    • 1
  1. 1.Post Graduate Department of BiosciencesSardar Patel UniversityGujratIndia

Personalised recommendations