Applied Biochemistry and Biotechnology

, Volume 76, Issue 1, pp 45–55 | Cite as

Effect of thermosensitive matrix-phase transition on urease-catalyzed urea hydrolysis

  • Nikolay L. Eremeev
  • Alexandr V. Kukhtin
  • Eugenia A. Belyaeva
  • Novella F. Kazanskaya
Article

Abstract

Temperature dependencies of kinetic and equilibrium parameters of urea hydrolysis catalyzed by native urease and the urease immobilized in a thermosensitive poly-N-isopropylacrylamide gel have been studied. The swelling ratio of the collapsed urease-containing gel is shown to increase in the presence of urea. Below a lower critical solution temperature (LCST) of the polymer, the immobilized u reaseactually has thesame catalytic properties as the native enzyme. At temperatures above LCST, the observed catalytic activity of the immobilized enzyme depends chiefly not only on the thermoreversible matrix state, but also on gel water content.

Index Entries

Enzymekinetics urease urea hydrolysis thermoreversible hydrogels phase transition enzyme activity thermoregulation 

Abbreviations

Ea

activation energy, kJ/mol

Km

Michaelis constant, M

V

reaction rate, mM/min

Vmax

maximum reaction rate, mM/min

Vmax.opf

maximum reaction rate in a pH optimum of enzyme activity, mM/min

T

temperature, K

t

temperatue, °C

([NH2)2CO)

urea concentration, M

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hoffman, A. S. (1990), Polymerpreprints 31, pp. 220,221.Google Scholar
  2. 2.
    Ire, M. (1993), in Responsive Gels: Volume Transitions II, Dusek, K., ed., Springer-Verlag, Berlin, pp. 50–65.Google Scholar
  3. 3.
    Kokufuta, E. (1993), in Responsive Gels: Volume Transitions II, Dusek, K., ed., Springer-Verlag, Berlin, pp. 157–177.CrossRefGoogle Scholar
  4. 4.
    Galayev, I. Yu. (1994), Biochemistry (Moscow) 59, 1478–1482.Google Scholar
  5. 5.
    Tanaka, T. (1978), Phys. Rev. Lett. 40, 820–823.CrossRefGoogle Scholar
  6. 6.
    Bae, Y. H., Okano, T., and Kim, S. W. (1990), J. Polym. Sci., Part B: Polym. Phys. 28, 923–936.CrossRefGoogle Scholar
  7. 7.
    Dong, L. C. and Hoffman, A. S. (1986), J. Controlled Release, 4, 223–227.CrossRefGoogle Scholar
  8. 8.
    Park, T. G. and Hoffman, A. S. (1990), J. Biomed. Mat. Res. 24, 21–38.CrossRefGoogle Scholar
  9. 9.
    Eremeev, N. L., Sigolaeva, L. V., and Kazanskaya, N. F. (1992), Vestn. MGU. Ser. Khim. 33, 511–515.Google Scholar
  10. 10.
    Kokufuta, E., Ogane, O., Iehijo H., Watanabe, S., and Hirasa, O. (1992), J. Chem. Soc. Chem. Commun. 5, 416–418.CrossRefGoogle Scholar
  11. 11.
    Sigolaeva, L. V., Eremeev, N. L., and Kazanskaya, N. F. (1993), Biotckhnologiya 5, 36–39.Google Scholar
  12. 12.
    Sigolaeva, L. V., Ermeeev, N. L., and Kazanskaya, N. F. (1994), Bioorg. Khim. 20, 268–273.Google Scholar
  13. 13.
    Ermeev, N. L., Sigolaeva, L. V., Simakov, P. A., and Kazanskaya, N. F. (1995), Biochemistry (Moscovo) 60, 991–999.Google Scholar
  14. 14.
    Kokufuta, E., Zhang, Y.-Q., Ilmain, F., and Tanaka, T. (1991), Polym. Prep. Jpn. 40, 4204–4210.Google Scholar
  15. 15.
    Park, T. G. and Hoffman, A. S. (1988), Appl. Biochem. Biotechnol. 19, 1–9.CrossRefGoogle Scholar
  16. 16.
    Raison, J. K., Lyons, J. M., and Tomson, W. W. (1971), Arch. Biochem. Biophys. 142, 83–90.CrossRefGoogle Scholar
  17. 17.
    Watson, K., Bertoli, E., and Griffiths, D. E. (1975), Biochem. J. 146, 401–407.Google Scholar
  18. 18.
    Mamada, A., Tanaka, T., Kungwatchakun, D., and Irie, M. (1990), Macromolecules 23, 1517–1519.CrossRefGoogle Scholar
  19. 19.
    Kokufuta, E., Zhang, Y.-Q., and Tanaka, T. (1991), Nature 351, 302–304.CrossRefGoogle Scholar
  20. 20.
    Plaut, H. and Ritter, J. J. (1951), J. Am. Chem. Soc. 83, 4076,4077.Google Scholar
  21. 21.
    Dixon, M. and Webb, E. (1982), Enzymes (Russian translation), vol. 1, Mir, Moscow.Google Scholar
  22. 22.
    Lynn, K. R. (1967), Biochim. Biophys. Acta 146, 205–218.Google Scholar
  23. 23.
    Huang, T.-C. and Chen, D.-H. (1992), J. Chem. Tech. Biotechnol. 55, 45–51.Google Scholar
  24. 24.
    Huang, T.-C. and Chen, D.-H. (1991), J. Chem. Tech. Biotechnol. 52, 443,444.Google Scholar
  25. 25.
    Qin, Y. and Cabral, J. M. S. (1994), Appl. Biochem. Biotechnol. 49, 217–240.Google Scholar
  26. 26.
    Martins, M. B. F., Cruz, M. E. M., Cabral, J. M. S., and Kennedy, J. F. (1987), J. Chem. Tech. Biotechnol. 39, 201–206.Google Scholar
  27. 27.
    Jansen, M. and Blume, A. (1995), Biophys. J. 68, 997–1008.CrossRefGoogle Scholar

Copyright information

© Humana Press Inc 1999

Authors and Affiliations

  • Nikolay L. Eremeev
    • 1
  • Alexandr V. Kukhtin
    • 1
  • Eugenia A. Belyaeva
    • 1
  • Novella F. Kazanskaya
    • 1
  1. 1.Department of Chemical Enzymology, Faculty of ChemistryLomonosov Moscow State UniversityMoscowRussia

Personalised recommendations