Skip to main content
Log in

Purification, characterization, kinetic properties, and thermal behavior of extracellular polygalacturonase produced by filamentous fungus Tetracoccosporium sp

  • Original Research Articles
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

For the first time, a polygalacturonase from the culture broth of Tetracoccosporium sp. was isolated and incubated at 30°C in an orbital shaker at 160 rpm for 48h. The enzyme was purified by ammonium sulfate precipitation and two-step ion-exchange chromatography and had an apparent molecular mass of 36 kDa, as shown by sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis. Its optimum activity was at pH 4.3 and 40°C, and the K m and V max values of this enzyme (for polygalacturonic acid) were 3.23 mg/mL and 0.15 μmol/min, respectively. Ag+, Co2+, EDTA, Tween-20, Tween-80, and Triton X-100 stimulated polygalacturonase activity whereas Al3+, Ba2+, Ca2+, Fe2+, Fe3+, Ni2+, Mg2+, Mn2+, and SDS inhibited it. In addition, iodoacetamide and iodoacetic acid did not inhibit enzyme activity at a concentration of 1 mM, indicating that cysteine residues are not part of the catalytic site of polygalacturonase. We studied the kinetic properties and thermal inactivation of polygalacturonase. This enzyme exhibited a t 1/2 of 63 min at 60°C and its specific activity, turnover number, and catalytic efficiency were 6.17 U/mg, 113.64 min−1, and 35.18 mL/(min·mg), respectively. The activation energy (ΔE #) for heat inactivation was 5.341 kJ/mol, and the thermodynamic activation parameters ΔG #, ΔH #, and ΔS # were also calculated, revealing a potential application for the industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kaur, G., Kumar, S., and Satyanarayana, T. (2004), Bioresour. Technol. 94, 239–243.

    Article  CAS  Google Scholar 

  2. Kirk, O., Borchert, T. V., and Fuglsang, C. C. (2002), Curr. Opin. Biotechnol. 13, 345–351.

    Article  CAS  Google Scholar 

  3. Diana, D. (2001), Roum. Biotechnol. Lett 6(5), 397–402.

    Google Scholar 

  4. Soares, M. M. C. N., De Silva, R., and Gomes, E. (1999), Rev. Microbiol. 30, 299–303.

    CAS  Google Scholar 

  5. Kashyap, D. R., Vohra, P. K., Chopra, S., and Tewari, R. (2001), Bioresour. Technol. 77, 215–227.

    Article  CAS  Google Scholar 

  6. Sakamoto, T., Bonnin, E., Quemener, B., and Thibault, J.-F. (2002), Biochim. Biophys. Acta 1572, 10–18.

    CAS  Google Scholar 

  7. Hoondal, G. S., Tiwari, R., and Dahiya, N. (2002), Appl. Microbiol. Biotechnol. 59, 409–418.

    Article  CAS  Google Scholar 

  8. Ortega, N., de Diego, S., Perez-Mateos, M., and Busto, M. D. (2004), Food Chem. 88, 209–217.

    Article  CAS  Google Scholar 

  9. Mohamed, S. A., Christensen, T. M. I. E., and Mikkelesen, J. D. (2003), Carbohydr. Res. 338, 515–524.

    Article  CAS  Google Scholar 

  10. Ainsworth, G. C., Sparrow, F. K., and Sussman, F. S. (1973), The Fungi: An Advanced Treatise, Vol. IV. Pub. Academic, London.

    Google Scholar 

  11. Blandino, A., Dravillas, K., Cantero, D., Padiella, S. S., and Webb, C. (2001), Process Biochem. 37, 497–503.

    Article  Google Scholar 

  12. Dartora, A. B., Bertolin, T. E., Bilibo, D., Silveria, M. M., and Costa, A. V. (2002), Z. Naturforsch. 57c, 666–670.

    Google Scholar 

  13. Miller, G. L. (1959), Anal. Chem. 31, 426–428.

    Article  CAS  Google Scholar 

  14. Bonnin, E., Le Goff, A., Körner, R., et al. (2001), Biochim. Biophys. Acta 1526, 301–309.

    CAS  Google Scholar 

  15. Laemmli, U. K. (1970), Nature 227, 680–685.

    Article  CAS  Google Scholar 

  16. Meril, C. R., Dunau, M. L., and Goldman, D. (1981), Anal. Biochem. 110, 201–207.

    Article  Google Scholar 

  17. Beg, Q. K., Bushan, B., Kapoor, M., and Hoondal, G. S. (2000), J. Ind. Microbiol. 40, 974–977.

    Google Scholar 

  18. Huang, L. K., and Mahoney, R. R. (1999), J. Appl. Microbiol. 86, 145–156.

    Article  CAS  Google Scholar 

  19. Acuña-Argüelles, M. E., Gutiérrez-Rojas, M., Viniegra-Gonzáles, G., and Favela-Torres, E. (1995), Appl. Microbiol. Technol. 43, 808–814.

    Google Scholar 

  20. Zheng, Z., and Shetty, K. (2000), Process Biochem. 35, 825–830.

    Article  CAS  Google Scholar 

  21. Elegado, F. B., and Fujio, Y. (1993), J. Genet. Appl. Microbiol. 39, 409–418.

    CAS  Google Scholar 

  22. Ceci, L., and Lozano, J. (1998), Food Chem. 62(1/2), 237–241.

    Article  Google Scholar 

  23. Rijssel, M., Gerwing, G. J., and Hansen, T. A. (1993), Appl. Environ. Microbiol. 59, 826–836.

    Google Scholar 

  24. Riou, C., Freyssinet, G., and Fever, M. (1992), Appl. Environ. Microbiol. 58, 578–583.

    CAS  Google Scholar 

  25. Blanco, P., Sieiro, C., Diaz, A., and Villa, T. G. (1994), Can. J. Microbiol. 40, 974–977.

    Article  CAS  Google Scholar 

  26. Kapoor, M., Beg, Q.K., Bhushan, B., Dadhich, K. S., and Hoondal, G. S. (2000), Process Biochem. 36, 239–243.

    Article  Google Scholar 

  27. Lourdes, M. D., Polizeli, T. M., Jorge, J. A., and Trenzi, H. F. (1991), J. Gen. Microbiol. 137, 1815–1823.

    Google Scholar 

  28. Sakiyama, C. C. H., Paola, E. M., Pereira, P. C., Borges, A. C., and Silva, D. O. (2001), Lett. Appl. Microbiol. 53, 117–221.

    Article  Google Scholar 

  29. Fullbrook, P. D. (1996), in Industrial Enzymology, Godfrey, T. and West, S., eds., Macmillan, London, pp. 483–501.

    Google Scholar 

  30. Asther, M., and Meunier, J. C. (1990), Enzyme Microb. Technol. 12, 902–905.

    Article  CAS  Google Scholar 

  31. Devi, N. A., and Rao, A. G. A. (1998), J. Agric. Food Chem. 46, 3540–3545.

    Article  CAS  Google Scholar 

  32. Agblor, A., Henderson, H. M., and Madrid, F. J. (1994), Food Res. Int. 27, 321–326.

    Article  CAS  Google Scholar 

  33. Naidu, G. S. N., and Panda, T. (2003), Biochem. Eng. J. 16, 57–67.

    Article  CAS  Google Scholar 

  34. Chung, Y.-J., Cho, Y.-J., Chum, S.-S., and Choi, C. (1992), Korean Soc. Food Nutricional 21(2), 195–200.

    CAS  Google Scholar 

  35. Manjón, A., Iborra, J. L., Romero, C., and Canovas, M. (1992), Appl. Biochem. Biotechnol. 37, 19–31.

    Google Scholar 

  36. Busto, M. D., Owusu Apenten, R. K., Robinson, D. S., Wu, Z., Casey, R., and Hughes, R. K. (1999), Food Chem. 65, 323–329.

    Article  CAS  Google Scholar 

  37. Brown, E. D. and Yada, R. Y. (1991), Biochim. Biophys. Acta 1076, 406–415.

    CAS  Google Scholar 

  38. Owusu, R. K. and Berthalon, N. (1993), Food Chem. 48, 231–235.

    Article  CAS  Google Scholar 

  39. Stearn, A. E. (1949), Adv. Enzymol. 9, 25–74.

    CAS  Google Scholar 

  40. Ahern, T. J. and Klibanov, A. M. (1988), Methods Biochem. Anal., 33, 91–127.

    Article  CAS  Google Scholar 

  41. Owusu, R. K., Makhzoum, A. M., and Knapp, J. S. (1992), Food Chem. 44, 261–268.

    Article  CAS  Google Scholar 

  42. Dannenberg, F. and Kessier, H. I. G. (1988), J. Food Sci. 53, 258–263.

    Article  CAS  Google Scholar 

  43. Grassin, C. and Fauquembergue, P. (1996), in Industrial Enzymology, Godfrey, T. and West, S., eds., Macmillan, London, pp. 226–264.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hossein Naderi-Manesh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aminzadeh, S., Naderi-Manesh, H., Khajeh, K. et al. Purification, characterization, kinetic properties, and thermal behavior of extracellular polygalacturonase produced by filamentous fungus Tetracoccosporium sp. Appl Biochem Biotechnol 135, 193–208 (2006). https://doi.org/10.1385/ABAB:135:3:193

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/ABAB:135:3:193

Index Entries

Navigation