Skip to main content
Log in

Gene transfer between different Trichoderma species and Aspergillus niger through intergeneric protoplast fusion to convert ground rice straw to citric acid and cellulases

  • Original Research Articles
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Single-stage direct bioconversion of cellulosic materials to citric acid using intergeneric hybrids obtained from three different Trichoderma species and Aspergillus niger was carried out. The recent results were obtained on the basis of either resistance or sensitivity to one or more of five metal ions, two catabolite repressors, and five antifungal agents, which were used in this study at different concentrations. Sixty-six fusants were isolated after using the three intergeneric protoplast fusion experiments, belonging to two types of intergeneric fusants. Fusants of the first type are heterokaryons (35 fusants). On the other hand, those of the second type are haploids (31 fusants), i.e. they were stable. The present study can be successfully applied in the construction of 14 new genetic fusants, which produced at least 100% more citric acid than the citric acid producer strain A. niger. Out of the fusants, three (1/18,2/13 and 2/15) showed about a threefold increase of citric acid production in comparison with the parent A. niger strain. Furthermore, studies on DNA content showed that this finding may be submitted on the evidence that citric acid and cellulases production was not correlated with DNA content; however, the productivity depends on specific DNA content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kumar, D., Jain, V. K., Shanker, G., and Srivastava, A. (2003), Process Biochem. 38, 1731–1738.

    Article  CAS  Google Scholar 

  2. Watanabe, T., Suzuki, A., Nakagawa, H., Kirimura, K., and Usami, S. (1998), Biores. Technol. 66, 271–274.

    Article  CAS  Google Scholar 

  3. Kumari, J. A. and Panda, T. (1994), Enzyme Microb. Technol. 16, 870–882.

    Article  CAS  Google Scholar 

  4. Pham, L. J. and Saturnina, C. Halos (1990), Enzyme Eng. 10, 575–581.

    Google Scholar 

  5. Kvesitadze, E. G., Adeishvili, E. T., and Gogodze, L. M. (1996), Appl. Biochem. Microbiol. 32(3), 296–298.

    Google Scholar 

  6. Solis, S., Flores, M. E., and Huitron, C. (1996), Lett. Appl. Microbiol. 23, 36–42.

    Article  CAS  Google Scholar 

  7. Meza, V., Moreno, P., Tengerdy, R. P., and Gutierrez-Correa, M. (1995), Biotechnol. Lett. 17(9), 827–832.

    Article  CAS  Google Scholar 

  8. Ogawa, K., Brown, J. A., and Wood, T. M. (1987), Enzyme Microb. Technol. April 9, 229–232.

    Article  Google Scholar 

  9. Kirimura, K., Itohiya, Y., Matsuo, Y., Zhang, M., and Usami, S. (1990), Agric. Biol. Chem. 54(5), 1281–1283.

    CAS  Google Scholar 

  10. Srinivas, D., Jagannadha Rao, K., Theodore, K. and Panda, T. (1995), Enzyme Microbial Technol. 17, 418–423.

    Article  CAS  Google Scholar 

  11. Kirimura, K., Sato, T., Nakanishi, N., Terada, M., and Usami, S. (1997), Appl. Microbiol. Biotechnol. 47, 127–131.

    Article  CAS  Google Scholar 

  12. EL-Bondkly, A. M. (2002), Ph. D. thesis, Fac. Agric., Kafr EL-Sheikh, Tanta University, Egypt.

  13. Marrier, J. R. and Boulet, M. (1958), J. Dairy Science 41, 1683.

    Article  Google Scholar 

  14. Herbert, D., Phipps, P. J., and Strange, R. E. (1971), in Methods in Microbiology 5 B (Norris and Ribbons, eds.), Academic Press, New York, NY, pp. 324–334.

    Google Scholar 

  15. Ceriotti, G. (1995), J. Biol. Chem. 214, 59–70.

    Google Scholar 

  16. Mandels, M., Andreotti, R., and Roche, C. (1976), in Enzymatic Conversion of Cellulose Materials: Technology and Applications (Gaden, E., et al., eds.), Wiley, New York, NY, pp. 21–23.

    Google Scholar 

  17. Miller, G. L. (1959), Anal. Chem. 31, 426–428.

    Article  CAS  Google Scholar 

  18. Vaheri, M. P., Vaheri, M. E. O., and Kauppinen, V. S. (1979), Eur. J. Appl. Microbiol. Biotechnol. 8, 73–80.

    Article  CAS  Google Scholar 

  19. Halos, S. C., Caday, R., Claudio, J., and Pham, L. J. (1989), Proc. Int. Symp. Biotechnology for Energy Dec. 16–21.

  20. Labudovà, I. and Farkaš, V. (1983), FEMS Microbiol. Lett. 20, 211–215.

    Article  Google Scholar 

  21. Spencer, T. F. T., Laud, P., and Spencer, D. M. (1980), Mol. Gen. Genet. 178, 651–654.

    Article  Google Scholar 

  22. Anne, J., Eyssem, H., and De Somer, P. (1974), Arch. Microbiol. 95, 159–166.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed M. El-Bondkly.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El-Bondkly, A.M. Gene transfer between different Trichoderma species and Aspergillus niger through intergeneric protoplast fusion to convert ground rice straw to citric acid and cellulases. Appl Biochem Biotechnol 135, 117–132 (2006). https://doi.org/10.1385/ABAB:135:2:117

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1385/ABAB:135:2:117

Index Entries

Navigation