Skip to main content
Log in

Sequential and simultaneous statistical optimization by dynamic design of experiment for peptide overexpression in recombinant Escherichia coli

  • Original Research Articles
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The production of recombinant anti-HIV peptide, T-20, in Escherichia coli was optimized by statistical experimental designs (successive designs with multifators) such as 24–1 fractional factorial, 23 full factorial, and 22 rotational central composite design in order. The effects of media compositions (glucose, NPK sources, MgSO4, and trace elements), induction level, induction timing (optical density at induction process), and induction duration (culture time after induction) on T-20 production were studied by using a statistical response surface method. A series of iterative experimental designs was employed to determine optimal fermentation conditions (media and process factors). Optimal ranges characterized by %T-20 (proportion of pepttide to the total cell protein) were observed, narrowed down, and further investigated to determine the optimal combination of culture conditions, which was as follows: 9, 6, 10, and 1 mL of glucose, NPK sources, MgSO4, and trace elements, respectively, in a total of 100 mL of medium inducted at an OD of 0.55–0.75 with 0.7 mM isopropyl-β-d-thiogalactopyranoside in an induction duration of 4 h. Under these conditions, up to 14% of T-20 was obtained. This statistical optimization allowed, the production of T-20 to be increased more than twofold (from 6 to 14%) within, a shorter induction duration (from 6 to 4 h) at the shake-flask scale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Richman, D. (1998), Nat. Med. 4(11), 1232–1233.

    Article  CAS  Google Scholar 

  2. Chan, D. C., Fass, D., Berger, J. M., and Kim, P. S. (1997), Cell 89, 263–273.

    Article  CAS  Google Scholar 

  3. Kilby, J. M., Hopkins, S., Venetta, T. M., et al. (1998), Nat. Med. 4(11), 1302–1307.

    Article  CAS  Google Scholar 

  4. Rice, W. G., Supko, J. G., Malspeis, L., et al. (1995), Science 270, 1194–1197.

    Article  CAS  Google Scholar 

  5. Vanot, G., Valerie, D., Guilhem, M. C., Phan-Tan-Luu, R. and Comeau, L. C. (2002), Appl. Microbiol. Biotechnol. 60, 417–419.

    Article  CAS  Google Scholar 

  6. Rimsky, L. T., Shugars, D. C., and Matthews, T. (1998), J. Virol. 72, 986–992.

    CAS  Google Scholar 

  7. Wei, X., Ghosh, S. K., Taylor, M. E., et al. (1995), Nature 373, 117–122.

    Article  CAS  Google Scholar 

  8. Lee, K.-M. and Gilmore, D. F. (2005), Appl. Biochem Biotechnol. 133, 113–148.

    Article  Google Scholar 

  9. Lee, K.-M. and Gilmore, D. F. (2005), Process Biochem. 40, 226–249.

    Google Scholar 

  10. Montgomery, D. C. (2004), Design and Analysis of Experiments, 6th ed., John Wiley & Sons, New York.

    Google Scholar 

  11. Myers, R. H. and Montgomery, D. C. (2002), Response surface Methodology Process and Product Optimization Using Designed Experiments, 2nd ed., John Wiley & Sons, New York.

    Google Scholar 

  12. Bollag, D. M., Rozycki, M. D., and Edelstiin, S. J. (1996), Protein Methods, 2nd ed., John Wiley & Sons, New York.

    Google Scholar 

  13. Buzzini, P. (2000), J. Ind. Microbiol. Biotechnol. 24, 41–45.

    Article  CAS  Google Scholar 

  14. Coninck, J., Bouquelet, S., Dumortier, V., Duyme, F., and Verdieer-Denantes, I. (2000), J. Ind. Microbiol. Biotechnol. 24, 285–290.

    Article  Google Scholar 

  15. El-Heolw, E. R., Abdel-Fatth, Y. R., Ghanem, K. M., and Mohamad, E. A. (2000), Appl. Microbiol. Biotechnol. 54, 515–520.

    Article  Google Scholar 

  16. Hounsa, C. G., Aubry, J. M., Dubourguier, H. C., and Hornez, J. P. (1996), Appl. Microbiol. Biotechnol. 45, 746–770.

    Article  Google Scholar 

  17. Souza, M. C. O., Roberto I. C., and Milagres, A. M. F. (1999), Appl. Microbiol. Biotechnol. 52, 768–772.

    Article  CAS  Google Scholar 

  18. Toksoy, E., Onsan, Z. I., and Kirdar, B. (2002), World J. Microbiol. Biotechnol. 18, 23–27.

    Article  CAS  Google Scholar 

  19. Tong, W. Y., Yao, S. J., Zhu, Z. Q., and Yu., J. (2001), Appl. Microbiol. Biotechnol. 57, 674–679.

    Article  CAS  Google Scholar 

  20. Trupkin, S., Levin, L., Forchiassin, F., and Viale, A. (2003), J. Ind. Microbiol. Biotechnol. 30, 682–690.

    Article  CAS  Google Scholar 

  21. Xie, L., Hall, D., Eiteman, M. A., and Altman, E. (2003), Appl. Microbiol. Biotechnol. 63, 267–273.

    Article  CAS  Google Scholar 

  22. Glick, B. R. (1995), Biotechnol. Adv. 13(2), 247–261.

    Article  CAS  Google Scholar 

  23. Cserjan-Puschmann, M., Kramer, M., Duerrschmid, E., Striedner, G., and Bayer, K. (1999), Appl. Microbiol. Biotechnol. 53, 43–50.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Coauthors.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, KM., Rhee, CH., Kang, CK. et al. Sequential and simultaneous statistical optimization by dynamic design of experiment for peptide overexpression in recombinant Escherichia coli . Appl Biochem Biotechnol 135, 59–80 (2006). https://doi.org/10.1385/ABAB:135:1:59

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/ABAB:135:1:59

Index Entries

Navigation