Applied Biochemistry and Biotechnology

, Volume 134, Issue 3, pp 263–272 | Cite as

Simultaneous saccharification and fermentation of cassava bagasse for l-(+)-lactic acid production using Lactobacilli

  • Rojan P. John
  • K. Madhavan Nampoothiri
  • Ashok Pandey
Original Research Articles

Abstract

Saccharification and fermentation of cassava (Manihot esculenta) bagasse was carried out in a single step for the production of L-(+)-lactic acid by Lactobacillus casei and Lactobacillus delbrueckii. Using 15.5% w/v of cassava bagasse as the raw material, a maximum starch to lactic acid conversion of 96% was obtained with L. casei with a productivity rate of 1.40mg/mL·h and maximum yield of 83.8 mg/mL. It was 94% with L. delbrueckii with a productivity rate of 1.36 mg/mL·h. and maximum yeild of 81.9 mg/mL. Supplementation of bagasse with 0.01% w/v MnCl2 showed positive influence on the lactic acid production by L. casei.

Index Entries

Cassavabagasse L-(+)-lacticacid lactobacilli simultaneous saccharification fermentation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Dimerci, A., Pometto III, A. L., and Johnson, K. E. (1993) Appl. Environ. Microbiol. 59, 203–207.Google Scholar
  2. 2.
    Anuradha, R., Suresh, A. K., and Venkatesh, K. V. (1999) Proc. Biochem. 35, 367–375.CrossRefGoogle Scholar
  3. 3.
    Pandey, A., Soccol, C. R., Jose, A., Rodriguez-loen, and Nigam P. (2001), Solid State Fermentation in Biotechnology: Fundamentals and Applications, Asiatech Publishers, New Delhi.Google Scholar
  4. 4.
    Yun, J., Wee, Y., and Ryu, H. (2003) Enzyme Microb. Technol. 33, 416–423.CrossRefGoogle Scholar
  5. 5.
    Yun, J., Wee, Y., Kim, J., and Ryu, H. (2004) Biotechnol. Lett. 18, 1613–1616.CrossRefGoogle Scholar
  6. 6.
    Naveena, B. J., Vishnu, C., Altaf, Md., and Reddy, G. (2003) J. Sci. Ind. Res. 62, 453–456.Google Scholar
  7. 7.
    Linko, Y. Y. and Javanainen P. (1996) Enzyme Microb. Technol. 19, 118–123.CrossRefGoogle Scholar
  8. 8.
    Abe, S. and Takagi, M. (1991) Biotechnol. Bioeng. 37, 93–96.CrossRefGoogle Scholar
  9. 9.
    Venkatesh, K. V. (1997) Biores. Technol. 62, 91–98.CrossRefGoogle Scholar
  10. 10.
    Yu, R. U. and Hang, Y. D. (1989) Biotechnol., Lett. 11, 597–600.CrossRefGoogle Scholar
  11. 11.
    Naveena B. J. (2004), Ph D Thesis, Osmania University, Hyderabad, India.Google Scholar
  12. 12.
    Pandey, A., Soccol, C. R., Nigam, P., Soccol, V. T., Vandenbergh, L. P. S., and Mohan, R. (2000) Biores. Technol. 74, 81–87.CrossRefGoogle Scholar
  13. 13.
    Woiciechowski, A. L., Nistsche, S., Pandey, A. and Soccol, C. R. (2002) Braz. Archives Biol. Technol. 45, 393–400.Google Scholar
  14. 14.
    Carta, F. S., Soccol, C. R., Ramos, L. P., and Fontana, J. D. (1999) Biores. Technol. 68, 23–28.CrossRefGoogle Scholar
  15. 15.
    Barker, S. B. and Summerson, W. H. (1941) J. Biol. Chem. 138, 535–554.Google Scholar
  16. 16.
    Miller, G. L. (1959) Anal. Chem. 31 426–429.CrossRefGoogle Scholar
  17. 17.
    Nampoothiri, K. M., Singhania, R. R., Sabarinath, C., and Pandey, A. (2003) Proc. Biochem. 38, 1513–1519.CrossRefGoogle Scholar
  18. 18.
    Hujanen, M. and Linko, Y. Y. (1994) Biotechnol. Tech. 8, 325–333.CrossRefGoogle Scholar
  19. 19.
    Hofvendahl, K. and Hahn-hagerdal, B. (2000) Enzyme. Microb. Technol. 26, 87–107.CrossRefGoogle Scholar
  20. 20.
    Nancib, A., Nancib, N., Meziane-cherif, D., Boudenbir, A., Fick, M., and Boudrant, J. (2005) Biores. Technol. 96, 63–67.CrossRefGoogle Scholar
  21. 21.
    Frobisher, M., Hinsdill, R. D., Crabtree, K. T., and Goodheart, C. R. (1974), in Fundamentals of Microbiology, WB Saunders Company, PhiladelphiaGoogle Scholar

Copyright information

© Humana Press Inc. 2006

Authors and Affiliations

  • Rojan P. John
    • 1
  • K. Madhavan Nampoothiri
    • 1
  • Ashok Pandey
    • 1
  1. 1.Biotechnology DivisionRegional Research Laboratory (CSIR) TrivandrumKeralaIndia

Personalised recommendations