Skip to main content
Log in

Optimization of critical medium components for the maximal production of gentamicin by Micromonospora echinospora ATCC 15838 using response surface methodology

  • Original Research Articles
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Optimization of the fermentation medium components for maximum gentamicin production by Micromonospora echinospora ATCC 15838 was carried out. Response surface methodology was applied to optimize the medium constituents. A 24full-factorial central composite design was chosen to explain the combined effects of the four medium constituents, viz. starch, soyabean meal, K2HPO4, and CoCl2 and to design a minimum number of experiments. A second order model was developed and fitted using least square method. The R 2 value of the model was 0.9723, which shows that model is best fit for the present studies. The results of analysis of variance and regression of a second order model showed that the linear effects of starch (p<0.001697) and CoCl2(p<7.99E-13), and cross product effects of starch and soyabean meal (p<0.029876) and soyabean meal and CoCl2 (p<0.008909) were more significant, suggesting that these were critical variables having the greatest effect on the production of gentamicin in the production medium. The optimized medium consisting of 9 g/L starch, 3 g/L soyabean meal, 0.9 g/L K2HPO4, and 0.01 g/L CoCL2 predicted 850 mg/L of gentamicin which was almost 110% higher than that of the unoptimized medium. The amounts of starch, soyabean meal, and K2HPO4 required were also reduced with RSM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Srinivasulu, B., Prakasam, R. S., Jetty, A., Srinivas, S., Ellaiah, P., Ramakrishna, S. V. (2002), Pro. Biochem. 38, 593–598.

    Article  CAS  Google Scholar 

  2. Swaroopa, R. A., Annapurna, J., Ramakrishna, S. V. (2003), Chem. Biochem. Eng. Q. 17, 99–174.

    Google Scholar 

  3. Jetty, A., Rao, A. G., Rao, S. B., Madhavi, G., and Ramakrishna, S. V. (2005), Chem. Biochem. Eng. Q. 19(2), 179–184.

    CAS  Google Scholar 

  4. Weinstein, M. J., Luedemann, G. M., Oden, E. M., and Wagman, G. H. (1965), Antimicro. Agents Chemother. 810–820.

  5. Weinstein, M. J., Luedemann, G. M., Oden, E. M., Wagman, G. H., Rosselet, J. P., Marquez, J. A., Coniglio J. A., et al. (1963), J. Med. Chem. 6, 463,464

    Article  Google Scholar 

  6. Abou-zeid, A. A., Abd El-Wahab, I. E., and Salem, H. M. (1974), J. App. Chem. Biotech. 24, 655–661.

    CAS  Google Scholar 

  7. Wagman, G. H. and Weinstein, M. J. (1980), Ann. Rev. Microbio., 34, 537–557.

    Article  CAS  Google Scholar 

  8. Litovchik, A., Eudokimov, A. G., and Lapidot, A. (1999), FEBS Let 445, 73–79.

    Article  Google Scholar 

  9. Kennedy, M. and Krouse, D. (1999), J. Ind. Microbio. Biotech. 23, 456–475.

    Article  CAS  Google Scholar 

  10. Sunitha, I., Subba Rao, M. V., and Ayyanna, C. (1998), Biopro. Eng. 18, 353–359.

    CAS  Google Scholar 

  11. Ambati, P. and Ayyanna, C. (2001), World J. Microbio. Biotech. 17, 331–335.

    Article  CAS  Google Scholar 

  12. Puri, S., Beg, Q. K., and Gupta, R. (2002), Cur. Microbio. 44, 286–290.

    Article  CAS  Google Scholar 

  13. Ismail Hakki Boyaci. (2005), Biochem. Eng. J. 25, 55–62.

    Article  Google Scholar 

  14. Adinaryana, K., Ellaiah, P., Srinivasulu, B., Bhavani Devi, R., and Adinarayana, G. (2003), Pro. Biochem 38, 1565–1572.

    Article  Google Scholar 

  15. Adinarayana, K. and Suren, S. (2005), Biochem. Eng. J. 27, 179–190.

    Article  Google Scholar 

  16. Murat, E. (2004), Pro. Biochem. 39, 1057–1062.

    Article  Google Scholar 

  17. Himabindu, M., and Jetty, A. (2005), World J Micrbio. Biotech. (communication number WIBI-S-05-00793).

  18. Sanchez, S., Mateos, R. C., Paniagua, L., Lara, F., and Mora, J. (1981), in Fermentation products (Young, M. M. and Venzina, C., eds.), Pergamon Press, Toronto, pp. 147–154.

    Google Scholar 

  19. Loewus, F. A. (1952), Anal. Chem. 24, 219.

    Article  CAS  Google Scholar 

  20. Bayraktar, E. (2001), Pro. Biochem. 37, 169–175.

    Article  CAS  Google Scholar 

  21. Myers, R. H. and Montgomery, D. C. (1995), Response Surface Methodology: Process and Product Optimization Using Designed Experiments, 1st ed. Wiley-Interscience, New York.

    Google Scholar 

  22. Khuri, A. I. and Cornell J. A (1987), Response Surfaces: Design and Analysis, New York.

  23. Box, G. E. P., Hunter, W. G., and Hunter, J. S. (1978), in Statistics for experimenters (John Wiley and Sons), New York, pp. 291–334.

    Google Scholar 

  24. Cochran, W. G. and Cox, G. M. (1957), in Experimental design, 2nd ed. (John Wiley and Sons), New York, pp. 346–354.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Annapurna Jetty.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Himabindu, M., Ravichandra, P., Vishalakshi, K. et al. Optimization of critical medium components for the maximal production of gentamicin by Micromonospora echinospora ATCC 15838 using response surface methodology. Appl Biochem Biotechnol 134, 143–154 (2006). https://doi.org/10.1385/ABAB:134:2:143

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/ABAB:134:2:143

Index Entries

Navigation