Advertisement

Applied Biochemistry and Biotechnology

, Volume 134, Issue 1, pp 89–96 | Cite as

Methyl jasmonate stimulates jaceosidin and hispidulin production in cell cultures of Saussurea medusa

  • Chun-Xiang Fu
  • Li-Qin Cheng
  • Xiao-Fen Lv
  • De-Xiu ZhaoEmail author
  • Fengshan Ma
Original Research Articles

Abstract

Cell cultures of Saussurea medusa produce valuable secondary metabolites, and jaceosidin and hispidulin are the major bioactive compounds. In the present study, the cultures were challenged by methyl jasmonate (MJ). The highest jaceosidin and hispidulin concentrations (65.2±3.67 mg/L and 12.3±0.47 mg/L) were achieved with 5 μM MJ added to 9-d-old subcultures, being 2.2-fold and 4.2-fold, respectively, higher than those from controls. The elicitor had little influence on cell growth, indicating that the changed biological processes did not include alterations in cell division. Furthermore, we observed that the activities of phenylalanine ammonia lyase were transiently increased after treatment with MJ, which suggests that this elicitor modifies jaceosidin and hispidulin production by regulating the phenylpropanoid pathway.

Index Entries

Jaceosidin hispidulin methyl jasmonate phenylalanine ammonia lyase Saussurea medusa 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Fan, C. Q. and Yue, J. M. (2003), Bioorg. Med. Chem. 11, 703–708.CrossRefGoogle Scholar
  2. 2.
    Szabo, E., Thelen, A., and Petersen, M. (1999), Plant Cell Rep. 18, 485–489.CrossRefGoogle Scholar
  3. 3.
    Beerheide, W., Bernard, H. U., Tan, Y. J., Ganesan, A., Rice, W. G., and Ting, A. E. (1999), J. Natl. Cancer Inst. 91, 1211–1220.CrossRefGoogle Scholar
  4. 4.
    Liu, L., Xiao, X., and Zhang, L. (1985), J. Lanzhou Univ. Nat. Sci. 21, 80–83.Google Scholar
  5. 5.
    Zhao, D. X., Qiao, C. L., Wang, Y. (1998), Act. Bot. Sin 40, 515–520.Google Scholar
  6. 6.
    Zhao, D. X., Fu, C. X., Han, Y. S., and Lu, D. P. (2005), Process Biochem. 40, 739–745.CrossRefGoogle Scholar
  7. 7.
    Pozo, M. J., Van, Loon, L. C., and Pieterse, C. M. J. (2005), J. Plant Growth Regul. 23, 211–220.Google Scholar
  8. 8.
    Turner, J. G., Ellis, C., and Devoto, A. (2002), Plant Cell 14 (suppl.), s153–164.CrossRefGoogle Scholar
  9. 9.
    Schenk, P. M., Kazan, K. I., Wilson, Anderson, J. P., Richmond, T., Somerville, S. C., and Manners, J. M. (2000), Proc. Natl. Acad. Sci. USA 97, 11,655–11,660.CrossRefGoogle Scholar
  10. 10.
    Kang, S. M., Jung, H. Y., Kang, Y. M., Yun, D. J., Bahk, J. D., Yang, J. K., and Choi, M. S. (2004), Plant Sci. 166, 745–751.CrossRefGoogle Scholar
  11. 11.
    Sharan, M., Taguchi, G., Gonda, K., Jouke, T., Shimosaka, M., Hayashida, N., and Okazaki, M. (1998), Plant Sci. 132, 13–19.CrossRefGoogle Scholar
  12. 12.
    Creelman, R. A. and Mullet, J. E. (1995), Proc. Natl. Acad. Sci. USA 92, 4114–4119.CrossRefGoogle Scholar
  13. 13.
    Hahlbrock, K. and Scheel, D. (1989), Annu. Rev. Plant Physiol. Plant Mol. Biol. 40, 347–369.CrossRefGoogle Scholar
  14. 14.
    Murashige, T. and Skoog, F. (1962), Physiol. Plant 15, 473–497.CrossRefGoogle Scholar
  15. 15.
    Kuzovkina, I. N., Guseva, A. V., Alterman, I. E., and Karnachuk, R. A. (2001), Russ. J. Plant Physiol. 48, 448–452.CrossRefGoogle Scholar
  16. 16.
    Hiroaki, H., Pengyu, H., and Kenichiro, I. (2003), Plant Cell Physiol. 44, 404–411.CrossRefGoogle Scholar
  17. 17.
    Tamari, G., Bochorov, A., and Weiss, D. (1995), Physiol. Plant 94, 45–50.CrossRefGoogle Scholar
  18. 18.
    Ketchum, R. E., Gibson, D. M., Croteau, R. B., and Shuler, M. L. (1999), Biotechnol. Bioeng. 62, 97–105.CrossRefGoogle Scholar
  19. 19.
    Komaraiah, P., Amrutha, R. N., Kishor, P. B. K., and Ramakrishna, S. V. (2002), Enzyme Microb. Technol. 31, 634–639.CrossRefGoogle Scholar
  20. 20.
    Mirjalili, N. and Linden, J. C. (1996), Biotechnol. Prog. 12, 110–118.CrossRefGoogle Scholar
  21. 21.
    Ciddi, V., Srinvasan, V., and Shuler, M. L. (1995), Biotechnol. Lett. 17, 1343–1346.CrossRefGoogle Scholar
  22. 22.
    Moreno, P. R. H., Poulsen, C., Heijden, R., and Verpoorte, R. (1996), Enzyme Microbiol. Technol. 18, 99–107.CrossRefGoogle Scholar
  23. 23.
    Lu, M., Wong, H., and Teng, W. (2001), Plant Cell Rep. 20, 674–677.Google Scholar

Copyright information

© Humana Press Inc 2006

Authors and Affiliations

  • Chun-Xiang Fu
    • 1
    • 2
  • Li-Qin Cheng
    • 1
    • 2
  • Xiao-Fen Lv
    • 1
    • 2
  • De-Xiu Zhao
    • 1
    • 2
    Email author
  • Fengshan Ma
    • 3
  1. 1.Key Laboratory of Photosynthesis and Environmental Molecular Physiology, Institute of BotanyChinese Academy of SciencesBeijingChina
  2. 2.the Graduate School of the Chinese Academy of SciencesChina
  3. 3.Department of BiologyUniversity of WaterlooWaterlooCanada

Personalised recommendations