Advertisement

Applied Biochemistry and Biotechnology

, Volume 134, Issue 1, pp 77–87 | Cite as

Thiol-dependent serine alkaline proteases from Bacillus sp. HR-08 and KR-8102

Isolation, production, and characterization
  • Fatemeh Moradian
  • Khosro KhajehEmail author
  • Hossein Naderi-Manesh
  • Rahim Ahmadvand
  • Reza H. Sajedi
  • Majid Sadeghizadeh
Original Research Articles

Abstract

Two Bacillus sp. strains, HR-08 and KR-8102, isolated from soil of the west and north parts of Iran were screened on gelatin agar medium for their ability to produce alkaline protease. The enzymes were active in a wide pH range (6.0–11.0) and stable in the alkaline range (7.0–12.0). The optimum temperatures for the protease from HR-08 and KR-8102 were 65 and 50°C, respectively. The irreversible thermoinactivation of HR-08 and KR-8102 proteases showed that the stability of HR-08 enzyme was higher than that of KR-8102 and the half-lives of these enzymes were 95 and 32 min at 50°C, respectively. In the presence of 10 mM Ca2+, HR-08 retained 100, 90, and 20% of its initial activity after heating for 30 min at 50, 60, and 70°C, respectively. Enzymes were inhibited by phenylmethylsulfonyl fluoride and iodoacetate. After inhibition by iodoacetate, both enzymes were reactivated by dithiothreitol. These data show that the enzymes seem to be thiol-dependent serine alkaline proteases. The enzymes especially from HR-08 were stable in the presence of H2O2, surfactants, and local detergents; their activities were enhanced in the presence of 5 mM Fe2+; and the presence of 5mM metal ions such as Mg2+, Cu2+, and Mn2+ produced almost no effect.

Index Entries

Proteolytic enzyme thermostability thiol-dependent protease commercial detergent inhibition 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Mala, B., Rao Aparna, M., and Deshpade, V. V. (1998), Microbiol. Mol. Biol. Rev. 62, 597–635.Google Scholar
  2. 2.
    Cowan, D. (1996), Trends Biotechnol. 14, 177, 178.Google Scholar
  3. 3.
    Cerovsky, V. (1992), Biotechnol. Tech. 6, 155–160.CrossRefGoogle Scholar
  4. 4.
    Sajedi, R. H., Naderi-Manesh, H., Khajeh, K., Ranjbar, B., Ghaemi, N., and Naderi-Manesh, M. (2004), Appl. Biochem. Biotechnol. 119, 41–50.CrossRefGoogle Scholar
  5. 5.
    Sajedi, R. H., Naderi-Manesh, H., Khajeh, K., Ahmadvand, R., Ranjbar, B., Moradian, F., and Asoodeh, A. (2005), Enzyme Microb. Technol. 36, 666–671.CrossRefGoogle Scholar
  6. 6.
    Sneath, P. H. A. (1986), Bergey’s Manual of Systematic Bacteriology, Williams & Wilkins, Baltimore, MD.Google Scholar
  7. 7.
    Pany, J. M., Tumbull, P. C. B., and Gibson, J. R. (1983), A Color Atlas of Bacillus Species, Wolfe Medical, London.Google Scholar
  8. 8.
    Fujiwara, N., Yamamoto, K., and Masui, A. (1991), J. Ferment. Bioeng. 72, 306–308.CrossRefGoogle Scholar
  9. 9.
    Kembhavi, A. A. and Kulkami, A. (1993), Appl. Biochem. Biotechnol. 38, 83–92.CrossRefGoogle Scholar
  10. 10.
    Liota, L. A. and Stetler Stevenson, W. G. (1990), Cancer Biol. 1, 96–106.Google Scholar
  11. 11.
    Anwar, A. and Saleemuddin, M. (1998), Bioresour. Technol. 64, 175–183.CrossRefGoogle Scholar
  12. 12.
    Rahman, R. N. Z. A., Razack, C. N., and Ampon, K. (1994), Appl. Microbiol. Biotechnol. 40, 822–827.CrossRefGoogle Scholar
  13. 13.
    Khalil Beg, Q. and Gupta, R. (2003), Enzyme Microb. Technol. 32, 294–304.CrossRefGoogle Scholar
  14. 14.
    Durham, D. R., Stewart, D. B., and Stellwag, E. J. (1987), J. Bacteriol. 169, 2762–2768.CrossRefGoogle Scholar
  15. 15.
    Kobayashi, T., Hakamada, Y., Adachi, S., and Koike, K. (1995), Appl. Microbiol. Biotechnol. 43, 437–481.CrossRefGoogle Scholar
  16. 16.
    Bayoudh, A., Gharsallah, N., and Nasri, M. (2000), J. Ind. Microbiol. Biotechnol. 24, 291–295.CrossRefGoogle Scholar
  17. 17.
    Rattray, F. P., Bockelmann, W., and Fox, P. F. (1994), Appl. Environ. Microbiol. 61, 3454–3456.Google Scholar
  18. 18.
    Gussesse, A. and Gashe, B. A. (1997), Biotechnol. Lett. 19, 479–481.CrossRefGoogle Scholar
  19. 19.
    Johnvesly, B. and Naik, G. R. (2001), Proces Biochem. 37, 139–144.CrossRefGoogle Scholar
  20. 20.
    Ghobel, B., Sellami-Kamoun, A., and Nasri, M. (2003), Enzyme Microb. Technol. 32, 513–518.CrossRefGoogle Scholar
  21. 21.
    Singh, J., Batra, N., and Sobati, R. C. (2001), Process Biochem. 36, 781–785.CrossRefGoogle Scholar
  22. 22.
    Johnvesly, B., Manjunath, B. R., and Naik, G. R. (2002), Bioresour. Technol. 82, 61–64.CrossRefGoogle Scholar
  23. 23.
    Manachini, P. L., Fortina, M. S., and Parini, C. (1998), Appl. Microbiol. 28, 409–413.Google Scholar
  24. 24.
    Manachini, P. L. and Fortina, M. G. (1998), Biochnol. Lett. 20, 565–568.CrossRefGoogle Scholar
  25. 25.
    Mehrotra, S., Pandey, P. K., Gaur, R., and Darmwal, N. S. (1999), Bioresour. Technol. 67, 201–203.CrossRefGoogle Scholar
  26. 26.
    Markland, F. S. and Smith, E. L. (1971), in The Enzymes, 3rd ed., Boyer, P. D., ed., Academic, New York, pp. 561–608.Google Scholar
  27. 27.
    Priest, F. G. (1977), Bacteriol. Rev. 41, 711–753.Google Scholar
  28. 28.
    Godfrey, T. A. and Reichelt, J. (1985), Industrial Enzymology: The Application of Enzymes in Industry, The Nature Press, London.Google Scholar

Copyright information

© Humana Press Inc 2006

Authors and Affiliations

  • Fatemeh Moradian
    • 1
  • Khosro Khajeh
    • 1
    Email author
  • Hossein Naderi-Manesh
    • 1
  • Rahim Ahmadvand
    • 1
  • Reza H. Sajedi
    • 1
  • Majid Sadeghizadeh
    • 1
  1. 1.Department of Biochemistry, Faculty of SciencesTarbiat Modarres UniversityTehranIran

Personalised recommendations