Advertisement

Applied Biochemistry and Biotechnology

, Volume 134, Issue 1, pp 61–76 | Cite as

Proliferation, viability, and metabolism of human tumor and normal cells cultured in microcapsule

  • Xulang Zhang
  • Wei Wang
  • Yubing Xie
  • Ying Zhang
  • Xiuli Wang
  • Xin Guo
  • Xiaojun MaEmail author
Original Research Articles

Abstract

In this study, we investigated the effect of the microenvironment provided by alginate-poly-l-lysine-alginate (APA) microcapsule with liquefied or gelled core on the proliferation, viability, and metabolism of human cells, including anchorage-dependent MCF-7 breast cancer cells and primary fibroblasts, and anchorage-independent K-562 leukemia cells; cells in conventional culture were used as control. The growth pattern of cells in microcapsule was examined by phase-contrast micrography. The cell viability, proliferation, organization, and gene expression were evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay, hematoxylin and eosin staining, live/dead staining, 5-bromo-20-deoxyuridine labeling, and immunohistochemistry, respectively. Cell metabolism was determined by measuring glucose and lactate concentrations in medium. The results demonstrate that APA microcapsule with liquefied core provides a microenvironment for both anchorage-dependent and anchorage-independent cells to grow into a large cell aggregate and maintain cell viability at a constant level for a period of time. In conclusion, cells in APA microcapsule are alive and have proliferation potential with lower metabolism rate. APA microcapsule may be a useful tool for in vitro tumor cell modeling and anticancer drug screening as well as for cancer gene therapy. In addition, it lays a solid foundation for the use of microencapsulation in cell culture in vitro and cell implantation in vivo.

Index Entries

Alginate microcapsule cell encapsulation poly-l-lysine tumor cell 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lim, F. and Sun, A. M. (1980), Science 210 (21), 908–910.CrossRefGoogle Scholar
  2. 2.
    Sambanis, A. (2003), Diabetes Technol. Ther. 5 (4), 665–668.CrossRefGoogle Scholar
  3. 3.
    Sun, T., Chan, M. L., Zhou, Y., et al. (2003), Tissue Eng. 9 (Suppl. 1), S65-S75.CrossRefGoogle Scholar
  4. 4.
    Basta, G., Sarchielli, P., Luca, G., (2004), et al., Transpl. Immunol. 13, 289–296.CrossRefGoogle Scholar
  5. 5.
    Luca, G., Basta, G., Calafiore, R., Rossi, C., Giovagnoli, S., Esposito, E., and Nastruzzi, C. (2003), Biomaterials 24, 3101–3114.CrossRefGoogle Scholar
  6. 6.
    Marc, R. G., Robert, C. H., and Emmanuel, C. O. (1998), J. Surg. Res. 1998; 76, 7–10.CrossRefGoogle Scholar
  7. 7.
    Ross, C. J. D., Ralph, M., and Chang, P. L. (2000), Exp. Neurol. 166, 276–286.CrossRefGoogle Scholar
  8. 8.
    Tadanobu, U., Henry, B., Josef, P., Thorsteinn, L., Thordis, K., Betty, M. T., and Alessandro, O. (1996), J. Control. Release 40, 251–260.CrossRefGoogle Scholar
  9. 9.
    Ma, X. J., Vaccie, I., and Sun, A. M. (1994), Art Cells Blood Subs. Immob. Biotech. 22 (1), 43–69.CrossRefGoogle Scholar
  10. 10.
    Bjerkvig, R., Read, T. A., Vajkoczy, P., et al. (2003), Acta Neurochir. Suppl. 88, 137–141.Google Scholar
  11. 11.
    Aristides, D. T., Ivan, A. D., Ian, R. G. et al. (2005), BBA-Mol. Cell. Biol. L 1686, 190–199.CrossRefGoogle Scholar
  12. 12.
    Barsoum, S. C., Milgram, W., Mackay, W., et al. (2003), J. Lab. Clin. Med. 142, 399–413.CrossRefGoogle Scholar
  13. 13.
    Patricia, L. C. (1996), Transfus. Sci. 17, 35–43.CrossRefGoogle Scholar
  14. 14.
    de Haan, B. J., Faas, M. M., and de Vos, P. (2003), Cell Transplant. 12(6) 617–625.CrossRefGoogle Scholar
  15. 15.
    Molly, M. S., Hala, F. Q., Robert, L., and Shastri, P. V. (2004), Biomaterials 25, 887–894.CrossRefGoogle Scholar
  16. 16.
    Hasan, U. and Michael, V. S. (1990), Biomaterials 11 (11), 708–712.Google Scholar
  17. 17.
    Orive, G., Hernandez, R. M., Gascon, A. R., Igartua, M., and Pedraz, J. L. (2003), Eur. J. Pharm. Sci. 18, 23–30.CrossRefGoogle Scholar
  18. 18.
    Shimi, S. M., Hopwood, D., Newman, E. L., and Cuschieri, A. (1991), Br. J. Cancer 63, 675–680.CrossRefGoogle Scholar
  19. 19.
    Zhang, X. L., Wang, W., Yu, W. T., Xie, Y. B., Zhang, X. H., Zhang, Y., and Ma, X. J. (2005), Biotechnol. Prog. 21, 1289–1296.CrossRefGoogle Scholar

Copyright information

© Human Press Inc 2006

Authors and Affiliations

  • Xulang Zhang
    • 1
    • 2
  • Wei Wang
    • 1
  • Yubing Xie
    • 1
  • Ying Zhang
    • 1
  • Xiuli Wang
    • 1
    • 2
  • Xin Guo
    • 1
  • Xiaojun Ma
    • 1
    Email author
  1. 1.Laboratory of Biomedical Material Engineering, Dalian Institute of Chemical PhysicsChinese Academy of SciencesDalianChina
  2. 2.Graduate School of the Chinese Academy of SciencesBeijingChina

Personalised recommendations