Applied Biochemistry and Biotechnology

, Volume 134, Issue 1, pp 39–50 | Cite as

Effect of lipase immobilization on resolution of (R, S)-2-octanol in nonaqueous media using modified ultrastable-Y molecular sieve as support

  • Dazhang Dai
  • Liming XiaEmail author
Original Research Articles


The lipase from Penicillium expansum PED-03 (PEL) was immobilized onto modified ultrastable-Y (USY) molecular sieve and the resolution of (R, S)-2-octanol was carried out in a bioreactor in nonaqueous media by the immobilized lipase. It was found that the conversion rate, enantiomeric excess (ee) value, and enantioselectivity (E) value of the resolution catalyzed by PEL immobilized on modified USY molecular sieve were much higher than those of the reaction catalyzed by free PEL and PEL immobilized on other supports. Immobilized on modified USY molecular sieve, the PEL exhibited obvious activity within a wider pH range and at a much higher temperature and showed a markedly enhanced stability against thermal inactivation, by which the suitable pH of the buffer used for immobilization could be “memorized.” The conversion rate of the reaction catalyzed by PEL immobilized on modified USY molecular sieve reached 48.84%, with excellent enantio-selectivity (avarege E value of eight batches >460) in nonaqueous media at “memorial” pH 9.5, 50°C for 24 h, demonstrating a good application potential in the production of optically pure (R, S)-2-octanol.

Index Entries

Modified ultrastable-Y molecular sieve immobilized lipase resolution 2-octanol catalytic property 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Cong, F. D., Wang, Y. H., Ma, C. Y., et al. (2005), Enzyme Microb. Technol. 36, 595–599.CrossRefGoogle Scholar
  2. 2.
    Gerald, K., Mark, P. S., and Alexander, M. K. (1985), J. Am. Chem. Soc. 107, 7072–7076.CrossRefGoogle Scholar
  3. 3.
    Zhu, J., Liu, H. H., Hu, Y., Xue, J. H., and Cao, S. G. (1998), J. Mol. Catal. 12, 323–328 (in Chinese).Google Scholar
  4. 4.
    Dai, D. Z. and Xia, L. M. (2005), Biotechnol. Prog. 21, 1165–1168.CrossRefGoogle Scholar
  5. 5.
    Ghanem, A. and Aboul-Enein, H. Y. (2004), Tetrahedron: Asymmetry 15(21), 3331–3351.CrossRefGoogle Scholar
  6. 6.
    Moon-Young, Y., Lee, S. H., Cheong, C. S., and Park, J. K. (2004), Enzyme Microb. Technol. 35, 574–580.CrossRefGoogle Scholar
  7. 7.
    Nair, M. S. and Joly, S. (2000), Tetrahedron: Asymmetry 11, 2049–2052.CrossRefGoogle Scholar
  8. 8.
    Isumi, T., Nakamura, K., and Fukase, T. (1990), Agric. Biol. Chem. 54, 1253–1258.Google Scholar
  9. 9.
    Sugihara, T., Tani, T., and Tominaga, Y. (1991), J. Biochem. 109, 211–216.Google Scholar
  10. 10.
    Ujang, Z., Husain, W. H., Seng, M. C., Abdul, R., and Abdul-Rashid, A. H. (2003), Process Biochem. 38, 1483–1488.CrossRefGoogle Scholar
  11. 11.
    Partridge, J., Halling, P. J., and Moore, B. D. (1998), Chem. Commun. 7, 841, 842.CrossRefGoogle Scholar
  12. 12.
    Kumar, D., Schumacher, K., du-Fresne-von-Hohenesche, C., Grün, M., and Unger, K. K. (2001), Colloids Surf. A: Physicochem. Eng. Aspects 187, 109–116.CrossRefGoogle Scholar
  13. 13.
    Dumitriu, E., Secundo, F., Patarin, J., and Fechete, I. (2003), J. Mol. Catal. B: Enzymat. 22, 119–133.CrossRefGoogle Scholar
  14. 14.
    Salis, A., Sanjust, E., Solinas, V., and Monduzzi, M. (2003), J. Mol. Catal. B: Enzymat. 24, 75–82.CrossRefGoogle Scholar
  15. 15.
    Takahashi, H., Li, B., Sasaki, T., Miyazaki, C., Kajino, T., and Inagaki, S. (2001), Microporous Mesoporous Mater. 44, 755–762.CrossRefGoogle Scholar
  16. 16.
    Bagi, K., Simon, L. M., and Szajáni, B. (1997), Enzyme Microb. Technol. 20, 531–535.CrossRefGoogle Scholar
  17. 17.
    Abdul, R. M., Tajudin, S. M., Hussein, M. Z., Abdul, R. R., Salleh, A. B., and Basri, M. (2005), Appl. Clay Sci. 29, 111–116.CrossRefGoogle Scholar
  18. 18.
    Adamczak, M. and Bednarski, W. (2004), Process Biochem. 39, 1347–1361.CrossRefGoogle Scholar
  19. 19.
    Wang, Z., Feng, Y., and Cao, S. G. (2002), Adv. Nat. Sci. 12, 130–134 (in Chinese)Google Scholar
  20. 20.
    Costantino, H. R., Griebenow, K., Lange, R., and Klibanow, A. M. (1997), Biotechnol. Bioeng. 53, 345–348.CrossRefGoogle Scholar
  21. 21.
    Yang, H., Cao, S. G., Han, S. P., Huang, Z. L., and Yang, T. S. (1996), Chin. Biochem. J. 12, 377–379 (in Chinese).CrossRefGoogle Scholar
  22. 22.
    Wang, Y., Zhang, F. B., Zhu, H. G., Song, Z. X., Wang, S. L., and Zeng, P. (2005), Chem. Reaction Eng. Technol. 21, 60–64 (in Chinese).Google Scholar
  23. 23.
    Li, M. Q., Wang, D. B., and Zhou, J. Y. (1993), Ion Exchange Adsorption 9, 199–203 (in Chinese).Google Scholar
  24. 24.
    Jacques, J., Collet, A., and Wilen, S. H. (1981), in Resolution of Alcohols: Enantiomers, Racemates and Resolutions, Wiley, New York, pp. 263–266.Google Scholar
  25. 25.
    Solladié-Cavallo, A., Schwarz, J., and Mouza, C. (1998), Tetrahedron Lett. 39, 3861–3864.CrossRefGoogle Scholar
  26. 26.
    Cativiela, C., Díaz-de-Villegas, M. D., and Gálvez, J. A. (1999), Tetrahedron Lett. 40, 1027–1030.CrossRefGoogle Scholar
  27. 27.
    Muralidhar, R. V., Chirumamilla, R. R., Ramachandran, V. N., Marchant, R., and Nigam, P. (2002), Bioorg. Med. Chem. 10, 1471–1475.CrossRefGoogle Scholar
  28. 28.
    Nascimento, M. G., Zanotto, S. P., Melegari, S. P., Fernandes, L. S., and Marcus, M. (2003), Tetrahdron: Asymmetry 14, 3111–3115.CrossRefGoogle Scholar
  29. 29.
    Zhang, Y. H., Yuan, C. Y., and Li, Z. Y. (2002), Tetrahedron 58, 2973–2978.CrossRefGoogle Scholar
  30. 30.
    Kato, K., Gong, Y. F., Saito, T., and Yokogawa, Y. (2004), J. Mol. Catal. B: Enzymat. 30, 61–68.CrossRefGoogle Scholar

Copyright information

© Humana Press Inc 2006

Authors and Affiliations

  1. 1.Department of Chemical Engineering and BioengineeringZhejiang UniversityHangzhouThe People’s Republic of China

Personalised recommendations