Applied Biochemistry and Biotechnology

, Volume 134, Issue 1, pp 15–26 | Cite as

Enhancement of acid tolerance in Zymomonas mobilis by a proton-buffering peptide

  • David J. Baumler
  • Kai F. Hung
  • Jeffrey L. Bose
  • Boris M. Vykhodets
  • Chorng M. Cheng
  • Kwang-Cheol Jeong
  • Charles W. KasparEmail author
Original Research Articles


A portion of the cbpA gene from Escherichia coli K-12 encoding a 24 amino acid proton-buffering peptide (Pbp) was cloned via the shuttle vector pJB99 into E. coli JM105 and subsequently into Zymomonas mobilis CP4. Expression of Pbp was confirmed in both JM105 and CP4 by HPLC. Z. mobilis CP4 carrying pJB99-2 (Pbp) exhibited increased acid tolerance (p<0.05) in acidified TSB (HCl [pH 3.0] or acetic acid [pH 3.5]), glycine-HCl buffer (pH 3.0), and sodium acetate-acetic acid buffer (pH 3.5) in comparison to the parent strain (CP4) and CP4 with pJB99 (control plasmid). Although the expression of Pbp influenced survival at a low pH, the minimum growth pH was unaffected. Growth of Z. mobilis in the presence of ampicillin also significantly increased acid tolerance by an unknown mechanism. Results from this study demonstrate that the production of a peptide with a high proportion of basic amino acids can contribute to protection from low pH and weak organic acids such as acetic acid.

Index Entries

Z. mobilis acid tolerance CbpA ampicillin pH homeostasis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Dien, B. S., Cotta, M. A., and Jeffries, T. W. (2003) Appl. Microbiol. Biotechnol. 63, 258–266.CrossRefGoogle Scholar
  2. 2.
    Jeffries, T. W. and Jin, Y. S. (2004) Appl. Microbiol. Biotechnol. 63, 495–509.CrossRefGoogle Scholar
  3. 3.
    Picataggio, S. K., Zhang, M., and Finkelstein, M. (1994), in Enzymatic Conversion of Biomass For Fuels Production (Himmel, M. E., Baker, J. O., and Overend, R. P., eds.), ACS Symp. Ser. 566, 342–362.Google Scholar
  4. 4.
    Swings, J. and DeLey, J. (1977) Bacteriol. Rev. 41, 1–46Google Scholar
  5. 5.
    Stokes, H. W., Picataggio, S. K., and Eveleigh, D. E. (1983), in Advances in Solar Energy (Böer, K. W. and Duffie, J. A., eds.), American Solar Energy Society, New York, NY, pp. 113–132.CrossRefGoogle Scholar
  6. 6.
    Zhang, M., Eddy, C., Deanda, K., Finkelstein, M., and Picataggio, S. (1995) Science. 267, 240–243.CrossRefGoogle Scholar
  7. 7.
    Mohagheghi, A., Evans, K., Chou, Y. C., and Zhang, M. (2002) Appl. Biochem. Biotechnol. 98–100, 885–898.CrossRefGoogle Scholar
  8. 8.
    Joachimsthal, E. L., Haggett, K. D., and Rogers, P. L. (1999) Appl. Biochem. Biotechnol. 77, 147–157.CrossRefGoogle Scholar
  9. 9.
    Kim, I. S., Barrow, K. D., and Rogers, P. L. (2000) Appl. Biochem. Biotechnol. 84–86, 357–370.CrossRefGoogle Scholar
  10. 10.
    Lawford, H. G. and Rousseau, J. D. (1999) Appl. Biochem. Biotechnol. 77–79, 235–249.CrossRefGoogle Scholar
  11. 11.
    Tucker, D. L., Tucker, N., and Conway, T. (2002) J. Bacteriol. 184, 6551–6558.CrossRefGoogle Scholar
  12. 12.
    Sambrook, J., Fritsch, E. F., and Maniatis, T. (1989) Molecular Cloning: a Laboratory Manual, 2nd ed., Cold Spring Harbor Laboratory, Cold Spring Harbor, NY.Google Scholar
  13. 13.
    Arnold, K. W. and Kaspar, C. W. (1995) Appl. Environ. Microbiol. 61, 2037–2039.Google Scholar
  14. 14.
    Byrd, J. J., Cheville, A. M., Bose, J. L., and Kaspar, C. W. (1999) Appl. Environ. Microbiol. 65, 2396–2401.Google Scholar
  15. 15.
    Afendra, A. S. and Drainas, C. (1987). J. Gen. Microbiol. 133, 127–134.Google Scholar
  16. 16.
    Seo, J. S., Chong, H., Park, H. S., Yoon, K. O., Jung, C., Kim, J. J., Hong, J. H., et al. (2005) Nature Biotech. 23(1) 63–68.CrossRefGoogle Scholar
  17. 17.
    Lehninger, A. L., Nelson, D. L., Cox, M. M. (1993), in Principles of Biochemistry, 2nd ed., Worth Publishers, New York, NY, p. 113.Google Scholar
  18. 18.
    Creighton, T. E. (1993) Proteins: Structures and Molecular Properties, 2nd ed., W. H. Freeman and Co., New York, NY.Google Scholar
  19. 19.
    Belaich, J. P. and Senez, J. C. (1965) J. Bacteriol. 89, 1195–1200.Google Scholar
  20. 20.
    Foster, J. W. (2000), in Bacterial Stress Responses (Storz, G., and Hengge-Aronis, R., eds.), American Society for Microbiology Press, Washington, D.C., pp. 99–115.Google Scholar
  21. 21.
    Sutcliffe, J. G. (1978) Proc. Natl. Acad. Sci. USA 75(8), 3737–3741.CrossRefGoogle Scholar

Copyright information

© Humana Press Inc 2006

Authors and Affiliations

  • David J. Baumler
    • 1
  • Kai F. Hung
    • 2
  • Jeffrey L. Bose
    • 2
  • Boris M. Vykhodets
    • 2
  • Chorng M. Cheng
    • 2
  • Kwang-Cheol Jeong
    • 2
  • Charles W. Kaspar
    • 1
    • 2
    • 3
    Email author
  1. 1.Cellular and Molecular BiologyUniversity of WisconsinMadison
  2. 2.Food Microbiology and ToxicologyUniversity of WisconsinMadison
  3. 3.Molecular and Environmental toxicologyUniversity of WisconsinMadison

Personalised recommendations