Skip to main content
Log in

Optimization of an innovative hollow-fiber process to produce lactose-reduced skim milk

  • Original Research Articles
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

An Erratum to this article was published on 01 November 2006

Abstract

The research field for applications of lactose hydrolysis has been investigated for several decades. Lactose intolerance, improvement for technical processing of solutions containing lactose, and utilization of lactose in whey are the main topics for development of biotechnological processes. We report here the optimization of a hollow-fiber membrane reactor process for enzymatic lactose hydrolysis. Lactase was circulated abluminally during luminal flow of skim milk. The main problem, the growth of microorganisms in the enzyme solution, was minimized by sterile filtration, ultraviolet irradiation, and temperature adjustment. Based on previous experiments at 23±2°C, further characterization was carried out at 8±2°C, 15±2°C (β-galactosidase), and 58±2°C (thermostable β-glycosidase) varying enzyme activity and flow rates. For a cost-effective process, the parameters 15±2°C, 240 U/mL of β-galactosidase, an enzyme solution flow rate of 25 L/h, and a skim milk flow rate of about 9 L/h should be used in order to achieve an aimed productivity of 360 g/(L·h) and to run at conditions for the highest process long-term stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ruttloff, H. (1994), Lactase. Industrielle Enzyme, 2nd ed., Behr’s Verlag, Hamburg, Germany, pp. 766–777.

    Google Scholar 

  2. Zadow, J. G. (1992), in Lactose Hydrolysis in Whey and Lactose Processing, (Zadow, J. G., ed.), Elsevier Science, Amsterdam, The Netherlands, pp. 2–21.

    Chapter  Google Scholar 

  3. Pivarnik, L. F., Senecal, A. G., and Rand, A. G. (1995), in Advances in Food and Nutrition: Research, vol. 3, (Kinsella, J. E. and Taylor, D. L., eds.), Academic, New York, pp. 1–101.

    Google Scholar 

  4. Mahoney, R. R. (1985), in Developments in Dairy Chemistry, vol. 3, (Fox, P. F., ed.), Elsevier Applied Science, Amsterdam, The Netherlands, pp. 69–108.

    Chapter  Google Scholar 

  5. Gekas, V. and Lopez-Leiva, M. (1985), Process Biochem. 20, 2–12.

    CAS  Google Scholar 

  6. Richmond, M. L., Gray, J. I., and Stine, C. M. (1981), J. Dairy Sci. 64, 1759–1771.

    Article  CAS  Google Scholar 

  7. Reimerdes, E. h. (1985), Abschlußbericht BM f. Forschung und Technologie, Reference number 038491, Follow-up report PTB 0382628, Bonn, Germany.

  8. Czermak, P., Eberhard, G., König, A., Tretzel, J., Reimerdes, E. H., and Bauer, W. (1988), in DECHEMA Biotechnology Conferences 2, (Behrens, D., ed.), VCH Verlagsgesellschaft, Weinheim, pp. 133–145.

    Google Scholar 

  9. Czermak, P. and Bauer, W. (1990), in DECHEMA Biotechnology Conferences 4 (Behrens, D., ed.), VCH Verlagsgesellschaft, Weinheim, pp. 763–766.

    Google Scholar 

  10. Czermak, P., Bahr, D., and Bauer, W. (1990), Chem. Ing. Tech. 62, 678–679.

    Article  CAS  Google Scholar 

  11. Czermak, P. (1992), Bioengineering 8(1), 47–52.

    CAS  Google Scholar 

  12. Novalin, S., Neuhaus, W., and Kulbe, K. D. (2005), J. Biotechnol. 119(2), 212–218.

    Article  CAS  Google Scholar 

  13. Voorhorst, W. G., Eggen, R. I., Luesink, E. J., and de Vos, D. M. (1995), J. Bacteriol. 177, 7105–7111.

    Article  CAS  Google Scholar 

  14. Splechtna, B., Petzelbauer, I., Kuhn, B., Kulbe, K. D., and Nidetzky, B. (2002), Appl. Biochem. Biotechnol. 98–100, 473–488.

    Article  Google Scholar 

  15. Petzelbauer, I., Nidetzky, B., Haltrich, D., and Kulbe, K. D. (1999), Biotechnol. Bioeng. 64(3), 322–332.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Winfried Neuhaus.

Additional information

A correction to this article is available at http://dx.doi.org/10.1385/ABAB:135:2:179

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Neuhaus, W., Novalin, S., Klimacek, M. et al. Optimization of an innovative hollow-fiber process to produce lactose-reduced skim milk. Appl Biochem Biotechnol 134, 1–14 (2006). https://doi.org/10.1385/ABAB:134:1:1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1385/ABAB:134:1:1

Index Entries

Navigation