Advertisement

Applied Biochemistry and Biotechnology

, Volume 134, Issue 1, pp 1–14 | Cite as

Optimization of an innovative hollow-fiber process to produce lactose-reduced skim milk

  • Winfried NeuhausEmail author
  • Senad Novalin
  • Mario Klimacek
  • Barbara Splechtna
  • Inge Petzelbauer
  • Alexander Szivak
  • Klaus D. Kulbe
Original Research Articles

Abstract

The research field for applications of lactose hydrolysis has been investigated for several decades. Lactose intolerance, improvement for technical processing of solutions containing lactose, and utilization of lactose in whey are the main topics for development of biotechnological processes. We report here the optimization of a hollow-fiber membrane reactor process for enzymatic lactose hydrolysis. Lactase was circulated abluminally during luminal flow of skim milk. The main problem, the growth of microorganisms in the enzyme solution, was minimized by sterile filtration, ultraviolet irradiation, and temperature adjustment. Based on previous experiments at 23±2°C, further characterization was carried out at 8±2°C, 15±2°C (β-galactosidase), and 58±2°C (thermostable β-glycosidase) varying enzyme activity and flow rates. For a cost-effective process, the parameters 15±2°C, 240 U/mL of β-galactosidase, an enzyme solution flow rate of 25 L/h, and a skim milk flow rate of about 9 L/h should be used in order to achieve an aimed productivity of 360 g/(L·h) and to run at conditions for the highest process long-term stability.

Index Entries

Lactose hydrolysis hollow-fiber module β-galactosidase thermostable CelB β-glycosidase diffusional reactor 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ruttloff, H. (1994), Lactase. Industrielle Enzyme, 2nd ed., Behr’s Verlag, Hamburg, Germany, pp. 766–777.Google Scholar
  2. 2.
    Zadow, J. G. (1992), in Lactose Hydrolysis in Whey and Lactose Processing, (Zadow, J. G., ed.), Elsevier Science, Amsterdam, The Netherlands, pp. 2–21.CrossRefGoogle Scholar
  3. 3.
    Pivarnik, L. F., Senecal, A. G., and Rand, A. G. (1995), in Advances in Food and Nutrition: Research, vol. 3, (Kinsella, J. E. and Taylor, D. L., eds.), Academic, New York, pp. 1–101.Google Scholar
  4. 4.
    Mahoney, R. R. (1985), in Developments in Dairy Chemistry, vol. 3, (Fox, P. F., ed.), Elsevier Applied Science, Amsterdam, The Netherlands, pp. 69–108.CrossRefGoogle Scholar
  5. 5.
    Gekas, V. and Lopez-Leiva, M. (1985), Process Biochem. 20, 2–12.Google Scholar
  6. 6.
    Richmond, M. L., Gray, J. I., and Stine, C. M. (1981), J. Dairy Sci. 64, 1759–1771.CrossRefGoogle Scholar
  7. 7.
    Reimerdes, E. h. (1985), Abschlußbericht BM f. Forschung und Technologie, Reference number 038491, Follow-up report PTB 0382628, Bonn, Germany.Google Scholar
  8. 8.
    Czermak, P., Eberhard, G., König, A., Tretzel, J., Reimerdes, E. H., and Bauer, W. (1988), in DECHEMA Biotechnology Conferences 2, (Behrens, D., ed.), VCH Verlagsgesellschaft, Weinheim, pp. 133–145.Google Scholar
  9. 9.
    Czermak, P. and Bauer, W. (1990), in DECHEMA Biotechnology Conferences 4 (Behrens, D., ed.), VCH Verlagsgesellschaft, Weinheim, pp. 763–766.Google Scholar
  10. 10.
    Czermak, P., Bahr, D., and Bauer, W. (1990), Chem. Ing. Tech. 62, 678–679.CrossRefGoogle Scholar
  11. 11.
    Czermak, P. (1992), Bioengineering 8(1), 47–52.Google Scholar
  12. 12.
    Novalin, S., Neuhaus, W., and Kulbe, K. D. (2005), J. Biotechnol. 119(2), 212–218.CrossRefGoogle Scholar
  13. 13.
    Voorhorst, W. G., Eggen, R. I., Luesink, E. J., and de Vos, D. M. (1995), J. Bacteriol. 177, 7105–7111.CrossRefGoogle Scholar
  14. 14.
    Splechtna, B., Petzelbauer, I., Kuhn, B., Kulbe, K. D., and Nidetzky, B. (2002), Appl. Biochem. Biotechnol. 98–100, 473–488.CrossRefGoogle Scholar
  15. 15.
    Petzelbauer, I., Nidetzky, B., Haltrich, D., and Kulbe, K. D. (1999), Biotechnol. Bioeng. 64(3), 322–332.CrossRefGoogle Scholar

Copyright information

© Humana Press Inc 2006

Authors and Affiliations

  • Winfried Neuhaus
    • 1
    Email author
  • Senad Novalin
    • 2
  • Mario Klimacek
    • 3
  • Barbara Splechtna
    • 2
  • Inge Petzelbauer
    • 2
  • Alexander Szivak
    • 2
  • Klaus D. Kulbe
    • 2
  1. 1.Department of Medicinal ChemistryUniversity of ViennaViennaAustria
  2. 2.Division of Food Biotechnology, Department of Food Sciences and TechnologyUniversity of Natural Resources and Applied Life SciencesViennaAustria
  3. 3.Institute of Biotechnology and Biochemical EngineeringUniversity of Technology GrazGrazAustria

Personalised recommendations