Advertisement

Applied Biochemistry and Biotechnology

, Volume 133, Issue 3, pp 203–210 | Cite as

Production of ceramide with Saccharomyces cerevisiae

  • Kyu Hyuk Kwun
  • Jung-heon Lee
  • Kyung-ho Rho
  • Hyun-shik Yun
Article

Abstract

The possibility of producing the biologically active material of the skin, ceramide, was studied using yeasts. The yeast strain that produced the most ceramide, Saccharomyces cerevisiae (KCCM 50515), was selected, and the optimal conditions for ceramide production were determined using shakeflask culture and batch fermentation. By measuring the production rate of ceramide at various pH values and temperatures, the optimal conditions for ceramide production were found to be pH 6.0 and 30°C. When heat shock was applied to the cells for 1 h by increasing the culture temperature from 30 to 40°C after cell growth, the amount of ceramide produced was increased 5.9-fold. A cell growth and ceramide production model was developed with Monod kinetics and the Leudecking-Piret model. It showed that ceramide production was increased when the cells were in the stationary phase.

Index Entries

Ceramide heat shock optimal condition Saccharomyces cerevisiae 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Rupeic, J., Mesaric, M., and Maric, V. (1998), Appl. Microbiol. Biotechnol. 50, 583–588.CrossRefGoogle Scholar
  2. 2.
    Wertz, P. W. and van den Bergh, B. (1998), Chem. Phys. Lipids 91, 85–96.CrossRefGoogle Scholar
  3. 3.
    Dickson, R. C. and Lester, R. L. (1999), Biochim. Biophys. Acta Biomembr. 1426, 347–357.Google Scholar
  4. 4.
    Skrzypek, M. S., Nagiec, M. M., Lester, R. L., and Dickson, R. C. (1998), J. Biol. Chem. 273, 2829–2834.CrossRefGoogle Scholar
  5. 5.
    Bouwstra, J. A., Gooris, G. S., Dubbelaar, F. E. R., Weerheim, A. M., Ijzerman, A. P., and Ponec, M. (1998), J. Lipid Res. 39, 186–196.Google Scholar
  6. 6.
    Vicanova, J., Weerheim, A. M., Kempenaar, J. A., and Ponec, M. (1999), Arch. Dermatol. Res. 291, 405–412.CrossRefGoogle Scholar
  7. 7.
    Kim, S. K., Kang, D. H., Yun, H. S., and Row, K. H. (2001), Theories Appl. Chem. Eng. 7, 773–776.Google Scholar
  8. 8.
    Wells, G. B., Dickson, R. C., and Lester, R. L. (1998), J. Biol. Chem. 273, 7235–7243.CrossRefGoogle Scholar
  9. 9.
    Norlen, L., Nicander, I., Lundsjo, A., Cronholm, T., and Forslind, B. (1998), Arch. Dermatol. Res. 290, 508–516.CrossRefGoogle Scholar
  10. 10.
    Zhou, J. Y., Chaminade, P., Gaudin, K., Prognon, P., and Baillet, A. (1999), J. Chromatogr. A 859, 99–105.CrossRefGoogle Scholar

Copyright information

© Humana Press Inc 2006

Authors and Affiliations

  • Kyu Hyuk Kwun
    • 1
  • Jung-heon Lee
    • 1
  • Kyung-ho Rho
    • 2
  • Hyun-shik Yun
    • 2
  1. 1.Department of Chemical EngineeringChosun UniversityKwangjuKorea
  2. 2.Department of Chemical EngineeringInha UniversityInchonKorea

Personalised recommendations