Applied Biochemistry and Biotechnology

, Volume 133, Issue 1, pp 41–57 | Cite as

Pretreatment of corn stover by low-liquid ammonia recycle percolation process

  • Tae Hyun Kim
  • Yoon Y. Lee
  • Changshin Sunwoo
  • Jun Seok Kim


A pretreatment method using aqueous ammonia was investigated with the intent of minimizing the liquid throughput. This process uses a flow-through packed column reactor (or percolation reactor). In comparison to the ammonia recycle percolation (ARP) process developed previously in our laboratory, this process significantly reduces the liquid throughput to one reactor void volume in packed bed (2.0–4.7 mL of liquid/g of corn stover) and, thus, is termed low-liquid ARP (LLARP). In addition to attaining short residence time and reduced energy input, this process achieves 59–70% of lignin removal and 48–57% of xylan retention. With optimum operation of the LLARP to corn stover, enzymatic digestibilities of 95, 90 and 86% were achieved with 60, 15, and 7.5 filter paper units/g of glucan, respectively. In the simultaneous saccharification and fermentation test of the LLARP samples using Saccharomyces cerevisiae (NREL-D5A), an ethanol yield of 84% of the theoretical maximum was achieved with 6% (w/v) glucan loading. In the simultaneous saccharification and cofermentation (SSCF) test using recombinant Escherichia coli (KO11), both the glucan and xylan in the solid were effectively utilized, giving an overall ethanol yield of 109% of the theoretical maximum based on glucan, a clear indication that the xylan content was converted into ethanol. The xylooligomers existing in the LLARP effluent were not effectively hydrolyzed by cellulase enzyme, achieving only 60% of digestibility. SSCF of the treated corn stover was severely hampered when the substrate was supplemented with the LLARP effluent, giving only 56% the overall yield of ethanol. The effluent appears to significantly inhibit cellulase and microbial activities.

Index Entries

Corn stover pretreatment aqueous ammonia bioenergy simultaneous saccharification and cofermentation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kadam, K. L. and McMillan, J. D. (2003), Bioresour. Technol. 88, 17–25.CrossRefGoogle Scholar
  2. 2.
    Gibbons, W. R., Westby, C. A., and Dobbs, T. L. (1986), Appl. Environ. Microbiol. 51 (1), 115–122.Google Scholar
  3. 3.
    Fernandez-Bolanos, J., Felizon, B., Heredia, A., and Jimenez, A. (1999), Bioresour. Technol. 68, 121–132.CrossRefGoogle Scholar
  4. 4.
    Mes-Hartree, M., Hogan, C. M., and Saddler, J. N. (1984), Conversion of Pretreated Lignocellulosic Substrates to Ethanol Using a Two Stage Process, 5th ed. Elsevier Applied Science, London, UK, pp. 469–472.Google Scholar
  5. 5.
    Sawada, T., Nakamura, Y., Kobayashi, F., Kuwahara, M., and Watanabe, T. (1995), Biotechnol. Bioeng. 48, 719–724.CrossRefGoogle Scholar
  6. 6.
    Schwald, W., Brownell, H. H., and Saddler, J. N. (1988), J. Wood Chem. Technol. 8 (4), 543–560.Google Scholar
  7. 7.
    Caufield, D. F. and Moore, W. E. (1974), Wood Sci. 6 (4), 375–379.Google Scholar
  8. 8.
    Koullas, D. P., Christakopoulos, P. F., Kekos, D., Macris, B. J., and Koukios, E. G. (1990), Cellulose Chem. Technol. 24, 469–474.Google Scholar
  9. 9.
    Matsumura, Y., Sudo, K., and Shimizu, K. (1977), Mokuzai Gakkaishi 23 (11), 562–570.Google Scholar
  10. 10.
    Puri, V. P. (1984), Biotechnol. Bioeng. 26, 1219–1222.CrossRefGoogle Scholar
  11. 11.
    Sintsyn, A. P., Gusakov, A. V., and Vlasenko, E. Y. (1991), Appl. Biochem. Biotechnol. 30, 43–59.Google Scholar
  12. 12.
    Allen, S. G., Schulman, D., Lichwa, J., Antal, M. J. Jr., and Lynd, L. R. (2001), Ind. Eng. Chem. Res. 40 (13), 2934–2941.CrossRefGoogle Scholar
  13. 13.
    Garrote, G., Dominguez, H., and Parajó, J. C. (2002), J. Food Eng. 52, 211–218.CrossRefGoogle Scholar
  14. 14.
    Lora, J. H. and Wayman, M. (1978), Tappi 61 (6), 47–50.Google Scholar
  15. 15.
    Váquez, M. J., Alonso, J. L., Dominguez, H., and Parajó, J. C. (2001), World J. Microbiol. Biotechnol. 17, 817–822.CrossRefGoogle Scholar
  16. 16.
    Burns, D. S., Ooshima, H., and Converse, A. O. (1989), Appl. Biochem. Biotechnol. 20/21, 79–94.CrossRefGoogle Scholar
  17. 17.
    Grethlein, H. (1985), Bioresour. Technol. 3, 155–160.Google Scholar
  18. 18.
    Jacobsen, S. E. and Wyman, C. E. (2000), Appl. Biochem. Biotechnol. 84–86, 81–96.CrossRefGoogle Scholar
  19. 19.
    Kim, J. S., Lee, Y. Y., and Torget, R. W. (2001), Appl. Biochem. Biotechnol. 91–93, 331–340.CrossRefGoogle Scholar
  20. 20.
    Mok, W. S., Antal, M. J. Jr., and Varhegyi, G. (1992), Ind. Eng. Chem. Res. 31 (1), 94–100.CrossRefGoogle Scholar
  21. 21.
    Kim, T. H. and Lee, Y. Y. (2005), Appl. Biochem. Biotechnol. 121–124, 1119–1132.CrossRefGoogle Scholar
  22. 22.
    Kim, T. H., Kim, J. S., Sunwoo, C., and Lee, Y. Y. (2003), Bioresour. Technol. 90, 39–47.CrossRefGoogle Scholar
  23. 23.
    Kim, T. H. and Lee, Y. Y. (2005), Bioresour. Technol. 96, 2007–2013.CrossRefGoogle Scholar
  24. 24.
    Kim, T. H. and Lee, Y. Y. (2006), Bioresour. Technol. 97, 224–232.CrossRefGoogle Scholar
  25. 25.
    Ferrer, A., Byers, F. M., Sulbarán-De-Fer, B., Dale, B. E., and Alello, C. (2000), Appl. Biochem. Biotechnol. 84–86, 163–179.CrossRefGoogle Scholar
  26. 26.
    Iyer, P. V., Wu, Z., Kim, S. B., and Lee, Y. Y. (1996), Appl. Biochem. Biotechnol. 57/58, 121–132.Google Scholar
  27. 27.
    Kim, S. B. and Lee, Y. Y. (1996), Appl. Biochem. Biotechnol. 57/58, 147–156.CrossRefGoogle Scholar
  28. 28.
    NREL. (2004), Chemical Analysis and Testing Laboratory Analytical Procedures (CAT), National Renewable Energy Laboratory, Golden, CO.Google Scholar
  29. 29.
    Palmqvist, E. and Hahn-Hägerdal, B. (2000), Bioresour. Technol. 74, 17–24.CrossRefGoogle Scholar
  30. 30.
    Palmqvist, E. and Hahn-Hägerdal, B. (2000), Bioresour. Technol. 74, 25–33.CrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2006

Authors and Affiliations

  • Tae Hyun Kim
    • 1
  • Yoon Y. Lee
    • 1
  • Changshin Sunwoo
    • 1
  • Jun Seok Kim
    • 1
  1. 1.Department of Chemical EngineeringAuburn UniversityAuburn

Personalised recommendations