Advertisement

Applied Biochemistry and Biotechnology

, Volume 132, Issue 1–3, pp 1034–1040 | Cite as

Use of different adsorbents for sorption and Bacillus polymyxa protease immobilization

  • Irem Kirkkopru
  • Cenk Alpaslan
  • Didem Omay
  • Yüksel Güvenilir
Session 6 Bioprocess Research and Development
  • 50 Downloads

Abstract

Proteases constitute one of the most important groups of industrial enzymes, accounting for at least 25% of the total enzyme sales, with two-thirds of the proteases produced commercially being of microbial origin (1). Immobilized enzymes are currently the subject of considerable interest because of their advantages over soluble enzymes or alternative, technologies, and the steadily increasing number of applications for immobilized enzymes. The general application of immobilized proteins and enzymes has played a central role in the expansion of biotechnology and synthesis-related industries. Proteases have been immobilized on natural and synthetic supports (2,3).

In the present work, a protease from Bacillus polymyxa was partially purified with 80% ammonium sulfate precipitation followed by dialysis and chromatography using a diethylaminoethyl (DEAE)-cellulose ion exchange column. Immobilization was evaluated by using different adsorbents (chitin, chitosan, alginate, synthetic zeolite, and raw zeolite) and the storage stability and recycle of the immobilized protease determined. Immobilization yields were estimated to be 96% and 7.5%, by using alginate and chitosan, respectively, after, 24 h. The yield of the immobilization was 17% for alginate at 16h and the enzyme did not adsorb on the chitin, chitosan, synthetic zeolite, and raw zeolite.

Index Entries

Alginate Bacillus polymyxa chitin immobilization protease 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Moon, S. M. and Satish, J., (1993), Biotech. Bioeng. 41, 43–54.CrossRefGoogle Scholar
  2. 2.
    Sierecka, K. (1998), Int. J. Biochem. Cell Biol. 30, 579–595.PubMedCrossRefGoogle Scholar
  3. 3.
    Longo, A. M., Novella, I. S., Garcia, L. A., and Diaz, M. (1999), J. Biosci. Bioeng. 88, 35–40.PubMedCrossRefGoogle Scholar
  4. 4.
    Kokufuta, E. (1993), Adv. Polym. Sci. 110, 157–177.CrossRefGoogle Scholar
  5. 5.
    Liang, J. F., Li, Y. T., and Yang, C. (2000), J. Pharm. Sci. 89, 979–990.PubMedCrossRefGoogle Scholar
  6. 6.
    Cabral, M. S. (1993), In: Thermostability of Enzymes, Gupta, M. N., ed., Springer-Verlag, Berlin, pp. 162–181.Google Scholar
  7. 7.
    Këstner, A. I. (1974), Russian Chem. Rev. 43, 690–705.CrossRefGoogle Scholar
  8. 8.
    Frost, G. M. and Moss, D. A. (1987), In: Biotechnology, Kennedy J., ed., New York.Google Scholar
  9. 9.
    Pazlarova, J. and Tsaplina, I. (1988), Folia Microbial. 33, 267–272.CrossRefGoogle Scholar
  10. 10.
    Jensen, D. E. (1972), Biotechnol. Bioeng. 14, 647–662.PubMedCrossRefGoogle Scholar
  11. 11.
    Bailey, J. E. and Ollis, D. F. (1987), In: Biochemical Engineering Fundamentals, McGraw-Hill, New York.Google Scholar
  12. 12.
    Yenigün, B. and Güvenilir, Y. (2003), Appl. Biochem. Biotechnol. 105–108, 677–687.PubMedCrossRefGoogle Scholar
  13. 13.
    Gerze, A., Omay, D., and Güvenilir, Y., (2005), Appl., Biochem. Biotechnol. 121 (1–3), 335–346.CrossRefGoogle Scholar
  14. 14.
    Orhan, E., Omay, D., and Güvenilir, Y. (2005), Appl. Biochem. Biotechnol. 121 (1–3), 183–194.PubMedCrossRefGoogle Scholar
  15. 15.
    Stoscheck, C. M. (1990), Methods Enzymol. 182, 50–69.PubMedGoogle Scholar
  16. 16.
    McKevitt, A. S., Bajaksouzian, J. D., and Klinger, D. E. (1989), Appl. Environ. Microbiol. 57, 771–778.Google Scholar
  17. 17.
    Sexton, M. M., Jones, A. L., and Chaowagul, W. (1994), Can. J. Microbiol. 40, 903–910.PubMedCrossRefGoogle Scholar
  18. 18.
    Rao, M. B., Tanksale, A. M., Ghatge, M. S., and Deshpande, V. V. (1998), Microbiol. Mol. Biol. Rev. 62, 597–635.PubMedGoogle Scholar
  19. 19.
    Gao, J., Xu, J., Locascio, L. E., and Lee, C. S. (2001), Anal. Chem. 73, 2648–2655.PubMedCrossRefGoogle Scholar
  20. 20.
    Cooper, J. W., Chen, J., Li, Y., and Lee, C. S. (2003), Anal. Chem. 75, 1067–1074.PubMedCrossRefGoogle Scholar
  21. 21.
    Batra, R. and Gupta, M. N. (1994), Biotech. Appl. Biochem. 19, 209–215.Google Scholar
  22. 22.
    Nisto, C., Emmenus, J., Gorton, L., and Ciucu, A. (1999), Anal. Chim. Acta 387 (3), 309–326.CrossRefGoogle Scholar

Copyright information

© Humana Press Inc 2006

Authors and Affiliations

  • Irem Kirkkopru
    • 1
  • Cenk Alpaslan
    • 1
  • Didem Omay
    • 1
  • Yüksel Güvenilir
    • 1
  1. 1.Department of Chemical EngineeringIstanbul Technical UniversityIstanbulTurkey

Personalised recommendations