Applied Biochemistry and Biotechnology

, Volume 130, Issue 1–3, pp 546–562 | Cite as

Steam pretreatment of acid-sprayed and acid-soaked barley straw for production of ethanol

Session 2 Today's Biorefineries

Abstract

Barley is an abundant crop in Europe, which makes its straw residues an interesting cellulose source for ethanol production. Steam pretreatment of the straw followed by enzymatic hydrolysis converts the cellulose to fermentable sugars. Prior to pretreatment the material is impregnated with a catalyst, for example, H2SO4, to enhance enzymatic digestibility of the pretreated straw. Different impregnation techniques can be applied. In this study, soaking and spraying were investigated and compared at the same pretreatment condition in terms of overall yield of glucose and xylose. The overall yield includes the soluble sugars in the liquid from pretreatment, including soluble oligomers, and monomer sugars obtained in the enzymatic hydrolysis. The yields obtained differed for the impregnation techniques. Acid-soaked barley straw gave the highest overall yield of glucose, regardless of impregnation time (10 or 30 min) or acid concentration (0.2 or 1.0 wt%). For xylose, soaking gave the highest overall yield at 0.2 wt% H2SO4. An increase in acid concentration resulted in a decrease in xylose yield for both acid-soaked and acid-sprayed barley straw. Optimization of the pretreatment conditions for acid-sprayed barley straw was performed to obtain yields using spraying that were as high as those with soaking. For acid-sprayed barley straw the optimum pretreatment condition for glucose, 1.0 wt% H2SO4 and 220°C for 5 min, gave an overall glucose yield of 92% of theoretical based on the composition of the raw material. Pretreatment with 0.2wt% H2SO4 at 190°C for 5 min resulted in the highest overall xylose yield, 67% of theoretical based on the composition of the raw material.

Index Entries

Barley straw pretreatment enzymatic hydrolysis H2SO4 ethanol 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Directive 2003/30/EC of the European parliament and of the council of 8 May 2003 on the promotion of the use of biofuels or other renewable fuels for transport, Official Journal of the European Union.Google Scholar
  2. 2.
    European Communities, 2004, Promoting biofuels in Europe, European Commission, Directorate-General for Energy and Transport, B-1049 Brussels.Google Scholar
  3. 3.
    Galbe, M. and Zacchi, G. (2002), Appl. Microbiol. Biotechnol. 59, 618–628.CrossRefGoogle Scholar
  4. 4.
    Palmarola-Adrados, B., Galbe, M., and Zacchi, G. (2005), J. Chem. Technol. Biotechnol. 80(1), 85–91.CrossRefGoogle Scholar
  5. 5.
    Söderström, J., Pilcher, L., Galbe, M., and Zacchi, G. (2003), Appl. Biochem. Biotechnol. 105–108, 127–140.CrossRefGoogle Scholar
  6. 6.
    Bettio, M., Bos, S., Bruyas, P., Cross, D., Weiler, F., and Zampogna, F. (2003), Eurostat yearbook 2003: the statistical guide to Europe: data 1991–2001, 8th ed., Office for official publications of the European communities, Luxembourg.Google Scholar
  7. 7.
    Kim, S. and Dale, B. E. (2004), Biomed. Bioener. 26, 361–375.CrossRefGoogle Scholar
  8. 8.
    Kadam, K. L. (1996), Handbook on Bioethanol: Production and Utilization, Taylor & Francis, Washington DC, pp. 213–252.Google Scholar
  9. 9.
    Sun, R. C., Fang, J. M., Rowlands, P., and Bolton, J. (1998), J. Agric. Food Chem. 46, 2804–2809.CrossRefGoogle Scholar
  10. 10.
    Glasser, W., Kaar, W. E., Jain, R. K., and Sealey, J. S. (2000), Cellulose 7, 299–317.CrossRefGoogle Scholar
  11. 11.
    Sun, Y. and Cheng, J. (2002), Biores. Technol. 83, 1–11.CrossRefGoogle Scholar
  12. 12.
    Tengborg, C., Stenberg, K., Galbe, M., et al. (1998), Appl. Biochem. Biotechnol. 70–72, 3–15.CrossRefGoogle Scholar
  13. 13.
    Nguyen, Q. A., Tucker, M. P., Boynton, B. L., Keller, F. A., and Schell, D. J. (1998), Appl. Biochem. Biotechnol. 70–72, 77–87.Google Scholar
  14. 14.
    von Sivers, M. and Zacchi, G. (1996), Biores. Technol. 56, 131–140.CrossRefGoogle Scholar
  15. 15.
    Wingren, A., Galbe, M., and Zacchi, G. (2003), Biotechnol. Progr. 19(4), 1109–1117.CrossRefGoogle Scholar
  16. 16.
    Nguyen, Q. A. and Saddler, J. N. (1991), Biores. Technol. 35, 275–282.CrossRefGoogle Scholar
  17. 17.
    Palmqvist, E., Hahn-Hägerdal, B., Galbe, M., et al. (1996), Biores. Technol. 58(2), 171–179.CrossRefGoogle Scholar
  18. 18.
    Ruiz, R. and Ehrman, T. (1996), Dilute Acid Hydrolysis Procedure for Determination of Total Sugars in the Liquid Fraction of Process Samples; Laboratory Analytical Procedure-014, National Renewable Energy Laboratory, Golden, CO.Google Scholar
  19. 19.
    Ehrman, T. (1994), Standard Method for Ash in Biomass, Laboratory Analytical Procedure-005, National Renewable Energy Laboratory, Golden, CO.Google Scholar
  20. 20.
    Ehrman, T. (1996), Determination of Acid-Soluble Lignin in Biomass, Laboratory Analytical Procedure-004, National Renewable Energy Laboratory, Golden, CO.Google Scholar
  21. 21.
    Ruiz, R. and Ehrman, T. (1996), Determination of Carbohydrates in Biomass by High Performance Liquid Chromatography, Laboratory Analytical Procedure-002, National Renewable Energy Laboratory, Golden, CO.Google Scholar
  22. 22.
    Templeton, D. and Ehrman, T. (1995), Determination of Acid-Insoluble Lignin in Biomass, Laboratory Analytical Procedure-003, National Renewable Energy Laboratory, Golden, CO.Google Scholar
  23. 23.
    Palmarola-Adrados, B., Chotìborská, P., Galbe, M., and Zacchi, G. (2005), Biores. Technol. 96(7), 843–850.CrossRefGoogle Scholar
  24. 24.
    Sluiter, A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J., and Templeton, D. (2004), Determination of Structural Carbohydrates and Lignin in Biomass, NREL, Golden, CO.Google Scholar
  25. 25.
    Baugh, K. D. and McCarty, P. L. (1988), Biotechnol. Bioeng. 31(1), 50–61.CrossRefGoogle Scholar
  26. 26.
    Clark, T. A. and Mackie, K. L. (1984), J. Chem. Technol. Biotechnol. 34B, 101–110.Google Scholar
  27. 27.
    Palmqvist, E. and Hahn-Hägerdal, B. (2000), Biores. Technol. 74, 25–33.CrossRefGoogle Scholar
  28. 28.
    Grohmann, K., Torget, R., and Himmel, M. (1986), Biotech. Bioeng. Symp. 17, 135–151.Google Scholar
  29. 29.
    Sassner, P., Galbe, M., and Zacchi, G. (2005), Appl. Biochem. Biotechnol. 121–124, 1101–1117.CrossRefGoogle Scholar
  30. 30.
    Söderström, J., Pilcher, L., Galbe, M., and Zacchi, G. (2003), Biom. Bioen. 24, 475–486.CrossRefGoogle Scholar

Copyright information

© Humana Press Inc 2006

Authors and Affiliations

  1. 1.Department of Chemical EngineeringLund UniversityLundSweden

Personalised recommendations