Skip to main content
Log in

The combined effects of acetic acid, formic acid, and hydroquinone on Debaryomyces hansenii physiology

  • Session 2 Today's Biorefineries
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The combined effects of inhibitors present in lignocellulosic hydrolysates was studied using a multivariate statistical approach. Acetic acid (0–6 g/L), formic acid (0–4.6 g/L) and hydroquinone (0–3 g/L) were tested as model inhibitors in synthetic media containing a mixture of glucose, xylose, and arabinose simulating concentrated hemicellulosic hydrolysates. Inhibitors were consumed sequentially (acetic acid, formic acid, and hydroquinone), alongside to the monosaccharides (glucose, xylose, and arabinose). Xylitol was always the main metabolic product. Additionally, glycerol, ethanol, and arabitol were also obtained.

The inhibitory action of acetic acid on growth, on glucose consumption and on all product formation rates was found to be significant (p≤0.05), as well as formic acid inhibition on xylose consumption and biomass production. Hydroquinone negatively affected biomass productivity and yield, but it significantly increased xylose consumption and xylitol productivity. Hydroquinone interactions, either with acetic or formic acid or with both, are also statistically signficant. Hydroquinone seems to partially lessen the acetic acid and amplify formic acid effects. The results clearly indicate that the interaction effects play an important role on the xylitol bioprocess.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Roberto, I. C., Felipe, M. G. A., Lacis, L. S., Silva, S. S., and Mancilha, I. M. (1991), Bioresour. Technol. 36, 271–275.

    Article  CAS  Google Scholar 

  2. Vandeska, E., Amartey, S., Kuzmanova, S., and Jeffries, T. W. (1995), World J. Microbiol. Biotechnol. 11, 213–218.

    Article  CAS  Google Scholar 

  3. Oh, D. K., Kim, S. Y., and Kim, J. H. (1998), Biotechnol. Bioeng. 58, 440–444.

    Article  CAS  Google Scholar 

  4. Saha, B. C., and Bothast, R. J. (1999), J. Ind. Microbiol. Biotechnol. 22, 633–636.

    Article  CAS  Google Scholar 

  5. Roseiro, J. C., Peito, M. A., Gírio, F. M., and Amaral-Collaço, M. T. (1991), Arch. Microbiol. 156, 484–490.

    CAS  Google Scholar 

  6. Domínguez, J. M. (1998), Biotechnol. Lett. 20, 53–56.

    Article  Google Scholar 

  7. Converti, A. and Domínguez, J. M. (2001), Biotechnol. Bioeng. 75, 39–45.

    Article  CAS  Google Scholar 

  8. Parajó, J. C., Domínguez, H., and Domínguez, J. M. (1998), Bioresour. Technol. 66, 25–40.

    Article  Google Scholar 

  9. Zaldivar, J. and Ingram, L. O. (1999), Biotechnol. Bioeng. 66, 203–210.

    Article  CAS  Google Scholar 

  10. Zaldivar, J., Martínez, A., and Ingram, L. O. (2000), Biotechnol. Bioeng. 68, 524–530.

    Article  CAS  Google Scholar 

  11. Gutierrez, T., Buszko, M. L., Ingram, L. O., and Preston, J. F. (2002), Appl. Biochem. Biotechnol. 98–100, 327–340.

    Article  Google Scholar 

  12. Ranatunga, T. D., Jervis, J., Helm, R. F., McMillan, J. D., and Hatzis, C. (1997), Appl. Biochem. Biotechnol. 67, 185–198.

    CAS  Google Scholar 

  13. Larsson, S., Palmqvist, E., Hahn-Hägerdal, B., et al. (1999), Enzyme Microbiol. Technol. 24, 151–159.

    Article  CAS  Google Scholar 

  14. Larsson, S., Quintana-Sáinz, A., Reimann, A., Nilvebrant, N. O., and Jönsson, L. J. (2000), Appl. Biochem. Biotechnol. 84–6, 617–632.

    Article  Google Scholar 

  15. Palmqvist, E., Grage, H., Meinander, N. Q., and Hahn-Hägerdal, B. (1999), Biotechnol. Bioeng. 63, 46–55.

    Article  CAS  Google Scholar 

  16. Fenske, J. J., Griffin, D. A., and Penner, M. H. (1998), J. Ind. Microbiol. Biotechnol. 20, 364–368.

    Article  CAS  Google Scholar 

  17. Oliva, J. M., Ballesteros, I., Negro, M. J., Manzanares, P., Cabanas, A., and Ballesteros, M. (2004), Biotechnol. Prog. 20, 715–720.

    Article  CAS  Google Scholar 

  18. Oliva, J. M. Ballesteros, I., Negro, M. J., Manzanares, P., and Ballesteros, M. (2004), In: 26th Symposium on Biotechnology for Fuels and Chemicals, Finkelstein, M. and Davison B., eds., pp. 163.

  19. Carvalheiro, F., Duarte, L. C., Lopes, S., Parajó, J. C., Pereira, H., and Gírio, F. M. (2005), Process Biochem. 40, 1215–1223.

    Article  CAS  Google Scholar 

  20. Mussatto, S. I. and Roberto, I. C. (2004), Bioresour. Technol. 93, 1–10.

    Article  CAS  Google Scholar 

  21. Mussatto, S. I., Santos, J. C., and Roberto, I. C. (2004), J. Chem. Technol. Biotechnol. 79, 590–596.

    Article  CAS  Google Scholar 

  22. Rodrigues, R. C. L. B., Felipe, M. G. A., Silva, J. B. A. E., and Vitolo, M. (2003), Process Biochem. 38, 1231–1237.

    Article  CAS  Google Scholar 

  23. Mancilha, I. M. and Karim, M. N. (2003), Biotechnol. Prog. 19, 1837–1841.

    Article  Google Scholar 

  24. Felipe, M. G. A., Vieira, D. C., Vitolo, M., Silva, S. S., Roberto, I. C., and Mancilha, I. M. (1995), J. Basic Microbiol. 35, 171–177.

    Article  CAS  Google Scholar 

  25. Lima, L. H. A., Felipe, M. G. A., Vitolo, M., and Torres, F. A. G. (2004), Appl. Microbiol. Biotechnol 65, 734–738

    Article  CAS  Google Scholar 

  26. Duarte, L. C., Carvalheiro, F., Neves, I., and Gírio, F. M. (2005), Appl. Biochem Biotechnol. 121, 413–425.

    Article  Google Scholar 

  27. Montgomery, D. C. (1997), Design and analysis of experiments, John Wiley & Sons, Inc., New York.

    Google Scholar 

  28. Amaral-Collaço, M. T., Gírio, F. M., and Peito, M. A. (1989), In: Enzyme Systems for Lignocellulosic Degradation, Coughlan, M. P., ed., Elsevier Applied Science, London, pp. 221–230.

    Google Scholar 

  29. Oh, D. K. and Kim, S. Y. (1998), Appl. Microbiol. Biotechnol. 50, 419–425.

    Article  CAS  Google Scholar 

  30. Tavares, J. M. Duarte, L. C., Amaral-Collaço, M. T., and Gírio, F. M. (2000) Enzyme Microbiol. Technol. 26, 743–747.

    Article  CAS  Google Scholar 

  31. Gírio, F. M., Amaro, C., Azinheira, H., Pelica, F., and Amaral-Collaço, M. T. (2000), Bioresour. Technol. 71, 245–251.

    Article  Google Scholar 

  32. Sánchez, S., Bravo, V., Castro, E., Moya, A. J., and Camacho, F. (2002), J. Chem. Technol. Biotechnol. 77, 641–648.

    Article  Google Scholar 

  33. Duarte, L. C., Carvalheiro, F., Lopes, S., Marques, S., Parajó, J. C., and Gírio, F. M. (2004), Appl. Biochem. Biotechnol., 113–116, 1041–1058.

    Article  Google Scholar 

  34. Pampulha, M. E. and Leisola, M. (2002), Appl. Microbiol. Biotechnol. 31, 547–550.

    Article  Google Scholar 

  35. Granström, T. and Leisola, M. (2002), Appl. Microbiol. Biotechnol. 58, 511–516.

    Article  Google Scholar 

  36. Mussatto, S. I., and Roberto, I. C. (2004), Biotechnol. Prog 20, 134–139.

    Article  CAS  Google Scholar 

  37. Heipieper, H. J. Keweloh, H., and Rehm, H. J. (1991), Appl. Environ. Microbiol. 57, 1213–1217.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Duarte, L.C., Carvalheiro, F., Tadeu, J. et al. The combined effects of acetic acid, formic acid, and hydroquinone on Debaryomyces hansenii physiology. Appl Biochem Biotechnol 130, 461–475 (2006). https://doi.org/10.1385/ABAB:130:1:461

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/ABAB:130:1:461

Index Entries

Navigation