Applied Biochemistry and Biotechnology

, Volume 130, Issue 1–3, pp 416–426 | Cite as

Maniplating the phenolic acid content and digestibility of italian ryegrass (Lolium multiflorum)b y vacuolar-targeted epession of a fungal ferulic acid esterase

  • Marcia M. de O. Buanafina
  • Tim Langdon
  • Barbara Hauck
  • Sue J D Alton
  • Phil Morris
Session 2 Today's Biorefineries
  • 121 Downloads

Abstract

In grass cell walls, ferulic acid esters linked to arabinosyl residues in arabinoxylans play a key role in crosslinking hemicellulose. Although such crosslinks have a number of important roles in the cell wall, they also hinder the rate and extent of cell wall degradation by ruminant microbes and by fungal glycohydrolyase enzymes. Ferulic acid esterase (FAE) can release both monomeric and dimeric ferulic acids from arabinoxylans making the cell wall more susceptible to further enzymatic attack. Transgenic plants of Lolium multiflorum expressing a ferulic acid esterase gene from Aspergillus niger, targeted to the vacuole under a constitutive rice actin promoter, have been produced following microprojectile bombardment of embryogenic cell cultures. The level of FAE activity was found to vary with leaf age and was highest in young leaves. FAE expression resulted in the release of monomeric and dimeric ferulic acids from cell walls on cell death and this was enhanced severalfold by the addition of exogenous β-1,4-endoxylanase. We also show that a number of plants expressing FAE had reduced levels of cell wall esterified monomeric and dimeric ferulates and increased in vitro dry-matter digestibility compared with nontransformed plants.

Index Entries

Constitutive vacuolar-targeted expression digestibility ferulic acid esterase L. multiflorum transgenic grasses 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hatfield, R. D., Ralph, J., and Grabber, J. H. (1999), J. Sci. Food Agric. 79, 403–407.CrossRefGoogle Scholar
  2. 2.
    Hartley, R. D. and Ford, C. W. (1989) Am. Chem. Soc. 9, 137–145.Google Scholar
  3. 3.
    Scalbert, A., Monties, B., Lallemand, J. Y., Guittet, E., and Rolando, C. (1985), Phytochemistry 24, 1359–1362.CrossRefGoogle Scholar
  4. 4.
    Ralph, J., Quideau, S., Grabber, J. H., and Hatfield, R.D. (1994), J. Chem. Soc. 1, 3485–3498.Google Scholar
  5. 5.
    Eraso, F. and Hartley, R. D. (1990), J. Sci. Food Agric. 51, 163–170.CrossRefGoogle Scholar
  6. 6.
    Grabber, J. H., Hatfield, J. R., and Ralph, J. (1998), J. Sci. Food Agric. 77, 193–200.CrossRefGoogle Scholar
  7. 7.
    de Vries, R. P., Michelsen, B., Poulsen, C. H., et al. (1997), Appl. Environ. Microbiol. 63, 4638–4644.Google Scholar
  8. 8.
    Rogers, J. C., Dean, D., and Heck, G. R. (1985), Proc. Natl. Acad. Sci. USA 82, 6512–6516.CrossRefGoogle Scholar
  9. 9.
    McElroy, D., Zhang, W., Cao, J., and Wu, R. (1990), Plant Cell 2, 163–171.CrossRefGoogle Scholar
  10. 10.
    Heim, R., Prasher, D. C., and Tsien, R. Y. (1994), Proc. Natl. Acad. Sci. USA 91, 12,501–12,504.CrossRefGoogle Scholar
  11. 11.
    Bilang, R., Iida, S., Peterhans, A., Potrykus, I., and Paskowski, J. (1991), Gene 100, 247–250.CrossRefGoogle Scholar
  12. 12.
    Dunn-Coleman, N., Langdon, T., and Morris, P. (2001), USA Patent Application No. 20030024009.Google Scholar
  13. 13.
    Dalton, S. J., Bettany, A. J. E., Timms, E., and Morris, P. (1999), Plant Cell Rep. 18, 721–726.CrossRefGoogle Scholar
  14. 14.
    Waldron, K. W., Parr, A. J., Ng, A., and Ralph, J. (1996), Phytochem. Anal. 7, 305–312.CrossRefGoogle Scholar
  15. 15.
    Jones, D. I. H. and Hayward, M. V. (1975), J. S. Food Agric. 26, 711–718.CrossRefGoogle Scholar
  16. 16.
    France, J., Dhanoa, M. S., Theodorou, M. K., Lister, S. J., Davies, D. R., and Isac, D. (1993), J. Theor. Biol. 163, 99, 100.Google Scholar
  17. 17.
    Bartolome, B., Faulds, C. B., Kroon, P. A., et al. (1997), Appl. Environ. Microbiol. 63, 208–212.Google Scholar
  18. 18.
    Hobbs, S. L. A., Kpodar, P., and Delong, C. M. O. (1990), Plant Mol. Biol. 15, 851–864.CrossRefGoogle Scholar
  19. 19.
    Pröls, F. and Meyer, P. (1992), Plant J. 2, 465–475.Google Scholar
  20. 20.
    Casler, M. D. and Vogel, K. P. (1999), Crop Sci. 39, 12–20.CrossRefGoogle Scholar
  21. 21.
    Ziegelhoffer, J., Will, J., and Austin-Phillips, S. (1999), Mol. Breed. 5, 309–318.CrossRefGoogle Scholar
  22. 22.
    Armstrong, J., Inglis, G., Kawchuk, L., et al. (2002), Am. J. Potato Res. 79, 39–48.CrossRefGoogle Scholar
  23. 23.
    Herbers, K., Wilke, I., and Sonnewald, U. (1995), Biotechnology 13, 63–66.CrossRefGoogle Scholar
  24. 24.
    Kimura, T., Mizutani, T., Tanaka, T., Koyama, T., Sakka, K., and Ohmiya, K. (2003), Appl. Microbiol. Biotechnol. 62, 374–379.CrossRefGoogle Scholar

Copyright information

© Humana Press Inc 2006

Authors and Affiliations

  • Marcia M. de O. Buanafina
    • 1
  • Tim Langdon
    • 1
  • Barbara Hauck
    • 1
  • Sue J D Alton
    • 1
  • Phil Morris
    • 1
  1. 1.Plant Animal and Microbial Science, Department, Institue of Grassland and Environmental ResearchAberystwythWales, UK

Personalised recommendations