Skip to main content
Log in

Transcription analysis of recombinant Saccharomyces cerevisiae reveals novel responses to xylose

  • Original Research Articles
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Lignocellulosic biomass, rich in hexose and pentose sugars, is an attractive resource for commercially viable bioethanol production. Saccharomyces cerevisiae efficiently ferments hexoses but is naturally unable to utilize pentoses. Metabolic engineering of this yeast has resulted in strains capable of xylose utilization. However, even the best recombinant S. cerevisiae strains of today metabolize xylose with a low rate compared to glucose. This study compares the transcript profiles of an S. cerevisiae strain engineered to utilize xylose via the xylose reductase-xylitol dehydrogenase pathway in aerobic chemostat cultures with glucose or xylose as the main carbon source. Compared to the glucose culture, 125 genes were upregulated, whereas 100 genes were downregulated in the xylose culture. A number of genes encoding enzymes capable of nicotinamide adenine dinucleotide phosphate regeneration were upregulated in the xylose culture. Furthermore, xylose provoked increased activities of the pathways of acetyl-CoA synthesis and sterol biosynthesis. Notably, our results suggest that cells metabolizing xylose are not in a completely repressed or in a derepressed state either, indicating that xylose was recognized neither as a fermentable nor as a respirative carbon source. In addition, a considerable number of the changes observed in the gene expression between glucose and xylose samples were closely related to the starvation response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jeffries, T. W. and Jin, Y.-S. (2004), Appl. Microbiol. Biotechnol. 63, 495–509.

    Article  CAS  Google Scholar 

  2. Ho, N. W., Chen, Z., and Brainard, A. P. (1998), Appl. Environ. Microbiol. 64, 1852–1859.

    CAS  Google Scholar 

  3. Eliasson, A., Christensson, C., Wahlbom, C. F., and Hahn-Hägerdal, B. (2000), Appl. Environ. Microbiol. 66, 3381–3386.

    Article  CAS  Google Scholar 

  4. Toivari, M. H., Aristidou, A., Ruohonen, L., and Penttilä, M. (2001), Metab. Eng. 3, 236–249.

    Article  CAS  Google Scholar 

  5. Toivari, M. H., Salusjärvi, L., Ruohonen, L., and Penttilä, M. (2004), Appl. Environ. Microbiol. 70, 3681–3686.

    Article  CAS  Google Scholar 

  6. Eliasson, A., Hofmeyr, J. H., Pedler, S., and Hahn-Hägerdal, B. (2001), Enzyme Microb. Technol. 29, 288–297.

    Article  CAS  Google Scholar 

  7. Jin, Y. S., Ni, H., Laplaza, J. M., and Jeffries, T. W. (2003), Appl. Environ. Microbiol. 69, 495–503.

    Article  CAS  Google Scholar 

  8. Anderlund, M., Radström, P., and Hahn-Hägerdal, B. (2001), Metab. Eng. 3, 226–235.

    Article  CAS  Google Scholar 

  9. Wahlbom, C. F., van Zyl, W. H., Jonsson, L. J., and Hahn-Hägerdal, B. (2003), FEMS Yeast Res. 3, 319–326.

    Article  CAS  Google Scholar 

  10. Sonderegger, M. and Sauer, U. (2003), Appl. Environ. Microbiol. 69, 1990–1998.

    Article  CAS  Google Scholar 

  11. Walfridsson, M., Hallborn, J., Penttilä, M., Keränen, S., and Hahn-Hägerdal, B. (1995), Appl. Environ. Microbiol. 61, 4184–4190.

    CAS  Google Scholar 

  12. Jeppsson, M., Johansson, B., Hahn-Hägerdal, B., and Gorwa-Grauslund, M. F. (2002), Appl. Environ. Microbiol. 68, 1604–1609.

    Article  CAS  Google Scholar 

  13. Verho, R., Londesborough, J., Penttilä, M., and Richard, P. (2003), Appl. Environ. Microbiol. 79, 5892–5897.

    Article  Google Scholar 

  14. Roca, C., Haack, M. B., and Olsson, L. (2004), Appl. Microbiol. Biotechnol. 63, 578–583.

    Article  CAS  Google Scholar 

  15. Kostrzynska, M., Sopher, C. R., and Lee, H. (1998), FEMS Microbiol. Lett. 159, 107–112.

    Article  CAS  Google Scholar 

  16. Metzger, M. H. and Hollenberg, C. P. (1995), Eur. J. Biochem. 228, 50–54.

    Article  CAS  Google Scholar 

  17. Watanabe, S., Kodaki, T., and Makino, K. (2005), J. Biol. Chem. 280, 10,340–10,349.

    CAS  Google Scholar 

  18. Petschacher, B., Leitgeb, S., Kavanagh, K. L., Wilson, D. K., and Nidetzky, B. (2005), Biochem. J. 385, 75–83.

    Article  CAS  Google Scholar 

  19. Roca, C., Nielsen, J., and Olsson, L. (2003), Appl. Environ. Microbiol. 69, 4732–4736.

    Article  CAS  Google Scholar 

  20. Aristidou, A., Londesborough, J., Penttilä, M., Richard, P., Ruohonen, L., Söderlund, H., Teleman, A., and Toivari, M. H. (1999), Patent WO 99/46363 PCT/FI99/00185.

  21. Kuyper, M., Harhangi, H. R., Stave, A. K., Winkler, A. A., Jetten, M. S. M., de Laat, W. T. A. M., den Ridder, J. J. J., Op den Camp, H. J. M., van Dijken, J. P., and Pronk, J. T. (2003), FEMS Yeast Res. 4, 69–78.

    Article  CAS  Google Scholar 

  22. Kuyper, M., Winkler, A. A., van Dijken, J. P., and Pronk, J. T. (2004), FEMS Yeast Res. 4, 655–664.

    Article  CAS  Google Scholar 

  23. Kuyper, M., Hartog, M. M. P., Toirkens, M. J., Almering, M. J. H., Winkler, A. A., van Dijken, J. P., and Pronk, J. T. (2005), FEMS Yeast Res. 5, 399–409.

    Article  CAS  Google Scholar 

  24. Pitkänen, J.-P., Aristidou, A., Salusjärvi, L., Ruohonen, L., and Penttilä, M. (2003), Metab. Eng. 5, 16–31.

    Article  Google Scholar 

  25. Salusjärvi, L., Poutanen, M., Pitkänen, J.-P., Koivistoinen, H., Aristidou, A., Kalkkinen, N., Ruohonen, L., and Penttilä, M. (2003), Yeast 20, 295–314.

    Article  Google Scholar 

  26. Palková, Z., Devaux, F., Ricicova, M., Minarikova, L., Le Crom, S., and Jacq, C. (2002), Mol. Biol. Cell 13, 3901–3914.

    Article  Google Scholar 

  27. Boles, E., Gohlmann, H. W., and Zimmermann, F. K. (1996), Mol. Microbiol. 20, 65–76.

    Article  CAS  Google Scholar 

  28. Ruohonen, L., Aalto, M. K., and Keränen, S. (1995), J. Biotechnol. 39, 193–203.

    Article  CAS  Google Scholar 

  29. Gietz, R. D. and Sugino, A. (1988), Gene 74, 527–534.

    Article  CAS  Google Scholar 

  30. Nadon, R. and Shoemaker, J. (2002), Trends Genet. 18, 265–271

    Article  CAS  Google Scholar 

  31. Benjamini, Y. and Hochberg, Y. (1995), J. R. Stat. Soc. Ser. B Method 57, 289–300.

    Google Scholar 

  32. Sambrook, J., Fritsch, E. F., and Maniatis, T. (1989), A Laboratory Manual Cold Spring Harbor Laboratory, Cold Spring Harbor, NY.

    Google Scholar 

  33. Pitkänen, J.-P., Rintala, E., Aristidou, A., Ruohonen, L., and Penttilä, M. (2005), Appl. Microbiol. Biotechnol. 67, 827–837.

    Article  Google Scholar 

  34. Meijer, M. M., Boonstra, J., Verkleij, A. J., and Verrips, C. T. (1998), J. Biol. Chem. 273, 24,102–24,107.

    Article  CAS  Google Scholar 

  35. Herrero, P., Galindez, J., Ruiz, N., Martinez-Campa, C., and Moreno, F. (1995), Yeast 11, 137–144.

    Article  CAS  Google Scholar 

  36. Luttik, M. A., Kötter, P., Salomons, F. A., van der Klei, I. J., van Dijken, J. P., and Pronk, J. T. (2000), J. Bacteriol. 182, 7007–7013.

    Article  CAS  Google Scholar 

  37. Vuralhan, Z., Morais, M. A., Tai, S.-L., Piper, M. D. W., and Pronk, J. T. (2003), Appl. Environ. Microbiol. 69, 4534–4541.

    Article  CAS  Google Scholar 

  38. Delneri, D., Gardner, D. C., Bruschi, C. V., and Oliver, S. G. (1999), Yeast (Chichester, West Sessex) 15, 1681–1689.

    CAS  Google Scholar 

  39. Dickinson, J. R., Salgado, L. E. J., and Hewlins, M. J. E. (2003), J. Biol. Chem. 278, 8028–8034.

    Article  CAS  Google Scholar 

  40. Daum, G., Lees, N. D., Bard, M., and Dickson, R. (1998), Yeast (Chichester, West Sussex) 14, 1471–1510.

    CAS  Google Scholar 

  41. Swain, E., Stukey J., McDonough, V., Germann, M., Liu, Y., Sturley, S. L., and Nickels, J. T. Jr. (2002), J. Biol. Chem. 277, 36,152–36,160.

    CAS  Google Scholar 

  42. Balciunas, D., Galman, C., Ronne, H., and Björklund, S. (1999), Proc. Natl. Acad. Sci. USA 96, 376–381.

    Article  CAS  Google Scholar 

  43. Prelich, G. (1997), Mol. Cell. Biol. 17, 2057–2065.

    CAS  Google Scholar 

  44. Geisberg, J. V., Holstege, F. C., Young, R. A., and Struhl, K. (2001), Mol. Cell. Biol. 21, 2736–2742.

    Article  CAS  Google Scholar 

  45. Lamb, T. M., Xu, W., Diamond, A., and Mitchell, A. P. (2001), J. Biol. Chem. 276, 1850–1856.

    Article  CAS  Google Scholar 

  46. Lyons, T. J., Gasch, A. P., Gaither, L. A., Botstein, D., Brown, P. O., and Eide, D. J. (2000), Proc. Natl. Acad. Sci. USA 97, 7957–7962.

    Article  CAS  Google Scholar 

  47. Tao, W., Deschenes, R. J., and Fassler, J. S. (1999), J. Biol. Chem. 274, 360–367.

    Article  CAS  Google Scholar 

  48. Brown, J. L., North, S., and Bussey, H. (1993), J. Bacteriol. 175, 6908–6915.

    CAS  Google Scholar 

  49. Morgan, B. A., Bouquin, N., Merrill, G. F., and Johnston, L. H. (1995), EMBO J. 14, 5679–5689.

    CAS  Google Scholar 

  50. Krems, B., Charizanis, C., and Entian, K.-D. (1996), Curr. Genet. 29, 327–334.

    CAS  Google Scholar 

  51. Sato, T., Lopez, M. C., Sugioka, S., Jigami Y., Baker, H. V., and Uemura, H. (1999), FEBS Lett. 463, 307–311.

    Article  CAS  Google Scholar 

  52. Akache, B., Wu, K., and Turcotte, B. (2001), Nucleic Acids Res. 29, 2181–2190.

    Article  CAS  Google Scholar 

  53. Sedlak, M., Edenberg, J. H., and Ho, N. W. Y. (2003), Enzyme Microb. Technol. 33, 19–28.

    Article  CAS  Google Scholar 

  54. Jin, Y.-S., Laplaza, J. M., and Jeffries, T. W. (2004), Appl. Environ. Microbiol. 70, 6816–6825.

    Article  CAS  Google Scholar 

  55. Wahlbom, C. F., Cordero Otero, R. R., van Zyl, W. H., Hahn-Hägerdal, B., and Jönsson, L. J. (2003), Appl. Environ. Microbiol. 69, 740–746.

    Article  CAS  Google Scholar 

  56. Sonderegger, M., Jeppsson, M., Hahn-Hägerdal, B., and Sauer, U. (2003), Appl. Environ. Microbol. 70, 2307–2317.

    Article  Google Scholar 

  57. Daran-Lapujade, P., Jansen, M. L. A., Daran, J. M., van Gulik, W. M., de Winde, J. H., and Pronk, J. T. (2004), J. Biol. Chem. 5, 9125–9138.

    Article  Google Scholar 

  58. Elbing, K., Larsson, C., Bill, R. M., Albers, E., Snoep, J. L., Boles, E., Hohmann, S., and Gustafsson, L. (2004), Appl. Environ. Microbiol. 70, 5323–5330.

    Article  CAS  Google Scholar 

  59. Elbing, K., Stahlberg, A., Hohmann, S., and Gustafsson, L. (2004), Eur. J. Biochem. 271, 4855–4864.

    Article  CAS  Google Scholar 

  60. Bakker, B. M., Bro, C., Kötter, P., Luttik, M. A., van Dijken, J. P., and Pronk, J. T. (2000), J. Bacteriol. 182, 4730–4737.

    Article  CAS  Google Scholar 

  61. Satrustegui, J., Bautista, J., and Machado, A. (1983), Mol. Cell Biochem. 51, 123–127.

    Article  CAS  Google Scholar 

  62. Belinchón, M. M. and Gancedo, J. M. (2003), Arch. Microbiol. 180, 293–297.

    Article  Google Scholar 

  63. Young, E. T., Dombek, K. M., Tachibana, C., and Ideker, T. (2003), J. Biol. Chem. 278, 26,146–26,158.

    CAS  Google Scholar 

  64. Dahlquist, K. D., Salomonis, N., Vranizan, K., Lawlor, S. C., and Conklin, B. R. (2002), Nat. Genet. 31, 19, 20.

    Article  CAS  Google Scholar 

  65. Cheng, C., Kacherovsky, N., Dombek, K. M., Camier, S., Thukral, S. K., Rhim, E., and Young, E. T. (1994), Mol. Cell. Biol. 14, 3842–3852.

    CAS  Google Scholar 

  66. Schöler, A. and Schüller, H. J. (1994), Mol. Cell. Biol. 14, 3613–3622.

    Google Scholar 

  67. Bram, R. J., Lue, N. F., and Kornberg, R. D. (1986), EMBO J. 5, 603–608.

    CAS  Google Scholar 

  68. Lundin, M., Nehlin, J. O., and Ronne, H. (1994), Mol. Cell. Biol. 14, 1979–1985.

    CAS  Google Scholar 

  69. Martinez-Pastor, M. T., Marchler, G., Schüller, C., Marchler-Bauer, A., Ruis, H., and Estruch, F. (1996), EMBO J. 15, 2227–2235.

    CAS  Google Scholar 

  70. Ogawa, N., Saitoh, H., Miura, K., Magbanua, J. P., Bun-ya, M., Harashima, S., and Oshima, Y. (1995), Mol. Gen. Genet. 249, 406–416.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura Salusjärvi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Salusjärvi, L., Pitkänen, JP., Aristidou, A. et al. Transcription analysis of recombinant Saccharomyces cerevisiae reveals novel responses to xylose. Appl Biochem Biotechnol 128, 237–273 (2006). https://doi.org/10.1385/ABAB:128:3:237

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/ABAB:128:3:237

Index Entries

Navigation