Skip to main content
Log in

Ethanol-induced changes in glycolipids of Saccharomyces cerevisiae

  • Original Research Articles
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Total glycolipid content of Saccharomyces cerevisiae cells increased in ethanol-treated yeast cells. Sialic acid and hexosamine contents of glycolipids from ethanol-treated cells decreased, whereas those of hexoses increased. Increased sialidase activity in the presence of ethanol may be responsible for the decrease in sialic acid content of glycolipids. The saccharide moieties of glycolipids of S. cerevisiae consisted of fucose, mannose, galactose, and glucose. Ethanol treatment of yeast cells caused an increase in glucose and a decrease in galactose content of glycolipids. The changes in glucose content can be related to changes in β-glucosidase activity under alcohol stress. The content of cerebrosides, sulfatides, and monoglucosyldiglycerides was enhanced following ethanol treatment. An increase in cerebroside as well as in sulfatide content during alcohol stress might play an important role in stabilizing the membrane both physically and structurally. Such variations in glycolipid content and composition of S. cerevisiae cells may represent an adaptive response to ethanol stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ingram, L. O. and Buttke, T. M. (1984), Adv. Microb. Physiol. 25, 253–300.

    CAS  Google Scholar 

  2. Sajbidor, J. (1997), Crit. Rev. Biotechnol. 17, 87–103.

    Article  CAS  Google Scholar 

  3. Gupta, S., Sharma, S. C., and Singh, B. (1994), Acta Microbiol. Immunol. Hung. 41, 197–204.

    CAS  Google Scholar 

  4. Mizoguchi, H. and Hara, S. (1997), J. Ferment. Bioeng. 83, 12–16.

    Article  CAS  Google Scholar 

  5. Kaur, J., Jaswal, V. M. S., Nagpaul, J. P., and Mahmood, A. (1992), Nutrition 8, 338–342.

    CAS  Google Scholar 

  6. Gill, S., Kaur, H., and Singh, B. (2000), in Environmental Protection, Thukral, A. K. and Virk, G. S., eds., Scientific, Jodhpur, pp. 299–303.

    Google Scholar 

  7. Hakamori, S. I. (2000), Glycoconju. J. 17, 143–151.

    Article  Google Scholar 

  8. Hannun, Y. A. and Luberto, C. (2000), Trends Cell. Biol. 10, 73–80.

    Article  CAS  Google Scholar 

  9. Curatolo, W. (1987), Biochim. Biophys. Acta 906, 111–136.

    CAS  Google Scholar 

  10. Jenkins, G. M., Richard, A., Wahl, T., Mao, C., Obeid, L., and Hannun, Y. (1997), J. Biol. Chem. 275, 32, 566–32, 572.

    Google Scholar 

  11. Hayashida, S., Feng, D. D., Ohta, K., Chaitiumvong, S., and Hongo, M. (1976), Agric. Biol. Chem. 40, 1139–1146.

    Google Scholar 

  12. Folch, J., Lee, M., and Sloane-Stanley, G. H. (1957), J. Biol. Chem. 226, 497–509.

    CAS  Google Scholar 

  13. Rouser, G., Kritchevsky, G., and Yamamoto, A. (1967), in Lipid Chromatographic Analysis vol. 3 (Marinetti, G. V., ed.), Marcel Dekker, New York, pp. 99–162.

    Google Scholar 

  14. Dubois, M., Gilles, K. A., Hamilton, J. K., Rebers, R. A., and Smith, F. (1956), Anal. Chem. 28, 350–354.

    Article  CAS  Google Scholar 

  15. Svennerholm, L. (1957), Biochim. Biophys. Acta 24, 604–611.

    Article  CAS  Google Scholar 

  16. Dische, Z. (1962), in Methods in Carbohydrate Chemistry, Whistler, R. L. and Wolfram, M. L., eds., Plenum, New York, pp. 575–595.

    Google Scholar 

  17. Chambers, R. E. and Clamp, J. R. (1971), Biochem. J. 125, 1009–1018.

    CAS  Google Scholar 

  18. Stahl, E. (1965), Thin Layer Chromatography: A Laboratory Handbook, Springer-Verlag, New York, p. 7.

    Google Scholar 

  19. Roe, J. H. (1955), J. Biol. Chem. 212, 335–343.

    CAS  Google Scholar 

  20. Gatt, S. and Rapport, M. M. (1966), Biochim. Biophys. Acta 113, 567–576.

    CAS  Google Scholar 

  21. Schauer, R. and Nohle, U. (1971) in Methods of Enzymatic Analysis, vol. 4, 3rd ed., pp. 195–208.

  22. Lowry, O. H., Rosenbrough, N. J., Farr, A. L., and Randall, R. J. (1951), J. Biol. Chem. 193, 265–275.

    CAS  Google Scholar 

  23. Ingram, L. O. (1986), Trends Biotechnol. 4, 40–44.

    Article  CAS  Google Scholar 

  24. Agudo, L. D. (1992), Appl. Microbiol. Biotechnol. 37, 647–665.

    Article  Google Scholar 

  25. Hobley, T. J. and Pamment, N. B. (1994), Biotechnol. Bioeng. 43, 155–158.

    Article  CAS  Google Scholar 

  26. Serrano, I., Lopes da Silva, T., and Carlos, R. J. (2001), Lett. Appl. Microbiol. 33, 89–93.

    Article  CAS  Google Scholar 

  27. Hernandéz, L. E. and Cooke, D. T. (1997), J. Exp. Botany 48, 1375–1381.

    Article  Google Scholar 

  28. Kaur, J. (2002), Ann. Nutr. Metab. 40, 38–44.

    Article  Google Scholar 

  29. Omodeo-Sale, F. and Palestine, P. (1994), Alcohol 11, 301–306.

    Article  CAS  Google Scholar 

  30. Ghosh, P., Ender, I., and Hale, E. A. (1998), Alcohol Clin. Exp. Res. 22(6), 1220–1226.

    CAS  Google Scholar 

  31. Ghosh, P. and Lakshman, M. R. (1997), Alcohol Clin. Exp. Res. 21(1), 76–81.

    CAS  Google Scholar 

  32. Sun, A. Y. and Sun, G. Y. (1983), Biochem. Biophys. Res. Commun. 113, 262–268.

    Article  CAS  Google Scholar 

  33. Barreto-Bergter, E., Pinto, M. R., and Rodrigues, M. L. (2004), Ann. Braz. Acad. Sci. 76, 67–84.

    CAS  Google Scholar 

  34. Toledo, M. S., Suzuki, E., Stratus, A. H., and Takahashi, H. K. (1995), J. Med. Vet. Mycol. 33,247–33,251.

    Google Scholar 

  35. Selevich, M. I. and Ostrovskii, I. M. (1988), Ukr. Biokhim. Zh. 60, 63–66.

    CAS  Google Scholar 

  36. Kumar, C. V., Lal, C. J., and Indira, M. (2001), Indian J. Physiol. Pharmacol. 45, 421–427.

    CAS  Google Scholar 

  37. Vrbaski, S. R., Petrovic, G. T., and Ristic, M. S. (1980), J. Neurochem. 35, 509–510.

    Article  CAS  Google Scholar 

  38. Kaur, J., Gupta, R., Kaur, M., Nagpaul, J. P., and Mahmood, A. (1994), J. Clin. Biochem. Nutr. 16, 133–142.

    CAS  Google Scholar 

  39. Wu, J., Seliskar, D. M., and Gallagher, J. R. (1998), Physiol. Plant 102, 307–317.

    Article  CAS  Google Scholar 

  40. Boges, J. M. S., Abdellah, M., and Godha, R. (2000), Biophys. J. 78(2), 874–885.

    Article  Google Scholar 

  41. Wieslander, A., Rilfors, L., and Lindblom, G. (1986), Biochem. J. 25, 7511–7517.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Balwant Singh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Malhotra, R., Singh, B. Ethanol-induced changes in glycolipids of Saccharomyces cerevisiae . Appl Biochem Biotechnol 128, 205–213 (2006). https://doi.org/10.1385/ABAB:128:3:205

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/ABAB:128:3:205

Index Entries

Navigation