Applied Biochemistry and Biotechnology

, Volume 128, Issue 2, pp 131–139 | Cite as

Optimization of glucoamylase production by Aspergillus niger in solid-state fermentation

  • Silvana T. Silveira
  • Melissa S. Oliveira
  • Jorge A. V. Costa
  • Susana J. Kalil


Glucoamylase production by Aspergillus niger in solid-state fermentation was optimized using factorial design and response surface techniques. The variables evaluated were pH and bed thickness in tray, having as response enzyme production and productivity. The bed thickness in tray was the most significant variable for both responses. The highest values for glucoamylase production occurred using pH 4.5 and bed thickness in the inferior limits at 2.0–4.2 cm. For productivity, the optimal conditions were at pH 4.5 as well and bed thickness from 4.4 to 7.5 cm. The optimal conditions for glucoamylase production while obtaining high activity without loss of productivity were pH 4.5 and bed thickness in tray from 4.0 to 4.5 cm, which resulted in an enzyme production of 695 U/g and productivity of 5791 U/h.

Index Entries

Aspergillus niger, factorial design glucoamylase optimization solid-state fermentation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Mase, T., Matsumiya, Y., Mori, S., and Matsuura, A. (1996), J. Ferment. Bioeng. 81, 347–350.CrossRefGoogle Scholar
  2. 2.
    James, J. A. and Lee, B. H. (1997), J. Food Biochem. 21, 1–52.CrossRefGoogle Scholar
  3. 3.
    Hasan, S. D. M., Costa, J. A. V., and Sanzo, A. V. (1998), Biotech. Tech. 12, 787–791.CrossRefGoogle Scholar
  4. 4.
    Bertolin, T. E., Costa, J. A. V., and Pasquali, G. D. L. (2001), J. Microbiol. Biotechnol. 11, 13–16.Google Scholar
  5. 5.
    Pandey, A. (1991), Proc. Biochem. 26, 355–361.CrossRefGoogle Scholar
  6. 6.
    Pandey, A., Selvakumar, P., and Ashkumary, L. (1996), Proc. Biochem. 31, 43–46.CrossRefGoogle Scholar
  7. 7.
    Adinarayana, K., Prabhakar, T., Srinivasulu, V., Anitha Rao, M., Jhansi Lakshmi, P., and Ellaiah, P. (2003), Proc. Biochem. 39, 171–177.CrossRefGoogle Scholar
  8. 8.
    Singh, H. and Soni, S. K. (2001), Proc. Biochem 31, 453–459.CrossRefGoogle Scholar
  9. 9.
    Ellaiah, P., Adinarayana, K., Bhavani, Y., Padmaja, P., ADN Srinivasulu, B. (2002), Proc. Biochem. 38, 615–620.CrossRefGoogle Scholar
  10. 10.
    Sanzo, A. V. L., Hansan, S. D. M., Costa, J. A. V., and Bertolin, T. E. (2001), Sci. Eng. J. 10, 59–62.Google Scholar
  11. 11.
    Kalil, S. J., Maugeri, F., and Rodrigues, M. I. (2000), Proc. Biochem. 35, 539–550.CrossRefGoogle Scholar
  12. 12.
    Khuri, A. I. and Cornell, J. A. (1987), Response Surface Design and Analysis, Marcel Dekker, New York.Google Scholar
  13. 13.
    Miller, G. L. (1959), Anal. Chem. 31, 426–428.CrossRefGoogle Scholar
  14. 14.
    Association of Official Analytical Chemists (AOAC). (2000), Official Methods of Analysis International, 17th ed., CD-ROM, William Horwitz, Washington, DC.Google Scholar
  15. 15.
    Haaland, P. D. (1989), Experimental Design in Biotechnology, Marcel Dekker, New York.Google Scholar
  16. 16.
    Burkert, J. F. M., Maugeri, F., and Rodrigues, M. I. (2004), Bioresour. Technol. 91, 77–84.CrossRefGoogle Scholar
  17. 17.
    Balasubramaniem, A. K., Nagarajan, K. V., AND Paramasamy, G. (2001), Proc. Biochem. 36, 1241–1247.CrossRefGoogle Scholar
  18. 18.
    Anto, H., Trivedi, U. B., and Patel, K. C. (2005), Bioresour. Technol., in press.Google Scholar

Copyright information

© Humana Press Inc 2006

Authors and Affiliations

  • Silvana T. Silveira
    • 1
  • Melissa S. Oliveira
    • 1
  • Jorge A. V. Costa
    • 1
  • Susana J. Kalil
    • 1
  1. 1.Department of ChemistryFederal University Foundation of Rio GrandeRio GrandeBrazil

Personalised recommendations