Applied Biochemistry and Biotechnology

, Volume 128, Issue 1, pp 23–32 | Cite as

Continuous biotreatment of copper-concentrated solutions by biosorption with Sargassum sp.

  • Francisca Pessôa de França
  • Flávia Pinto Padilha
  • Antonio Carlos Augusto da Costa
Original Research Articles


Seaweed Sargassum sp. biomass proved to be useful for the recovery of ionic copper from highly concentrated solutions simulating effluents from semiconductor production. In the case of solutions containing copper in the form of chloride, sulfate, and nitrate salts, the best pH for the recovery of copper was 4.5. It was observed that copper biosorption from copper nitrate solutions was higher than the recovery of copper from copperchloride or copper sulfate solutions. The continuous system used was constituted of four column reactors filled with the biomass of Sargassum sp. and showed high operational stability. The biomass of Sargassum sp. in the reactors was gradually saturated from the bottom to the top of each column reactor. The biomass of Sargassum sp. in the first column saturated first, followed by a gradual saturation of the remaining columns owing to preconcentration performed by the biomass in the first column. The biomass of Sargassum in the bioreactors completely biosorbed the ionic copper contained in 63 L of copper sulfate solution, 72 L of copper chloride solution, and 72 L of copper nitrate solution, all the solutions containing copper at 500 mg/L. Effluents produced after biosorption presented copper concentrations <0.5 mg/L.

Index Entries

Biosorption Semiconductor effluents Sargassum fixed-bed reactors 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Allen, S. and Hahn, M. R. (2003), Microbar Incorporated, Sunnyvale, CA.Google Scholar
  2. 2.
    You, S. H., Tseng, D. H., and Guo, G. L. (2001), Res. Conserv. Recycl. 32, 73–81.CrossRefGoogle Scholar
  3. 3.
    Antunes, W. M., Luna, A. S., Henriques, C. A., and da Costa, A. C. A. (2003), Electr. J. Biotechnol. 6(3), available at Scholar
  4. 4.
    Cruz, C. C. V., da Costa, A. C. A., Henriques, C. A., and Luna, A. S. (2004), Bioresour. Technol. 91, 249–257.CrossRefGoogle Scholar
  5. 5.
    Nuhoglu, Y. (2002), Bioresour. Technol. 85, 331–333.CrossRefGoogle Scholar
  6. 6.
    Kaesarn, P. (2002), Chemosphere 47, 1081–1085.CrossRefGoogle Scholar
  7. 7.
    Volesky, B., Weber, J., and Park, J. M. (2003), Water Res. 37, 297–306.CrossRefGoogle Scholar
  8. 8.
    da Costa, A. C. A. Duta, F. P., and de França, F. P. (2002), Eur. J. Min. Proc. Environ. Prot. 2, 131–141.Google Scholar
  9. 9.
    Palmieri, M. C., Volesky, B., and Garcia, O. Jr. (2002), Hydrometallurgy 67, 31–36.CrossRefGoogle Scholar
  10. 10.
    da Costa, A. C. A. and de França, F. P. (2003), Mar. Biotechnol. 85, 149–156.CrossRefGoogle Scholar
  11. 11.
    Davis, T. A., Volesky, B., and Vieira, R. H. S. F. (2000), Water Res. 34, 4270–4278.CrossRefGoogle Scholar
  12. 12.
    Duta, F. P. (2001), M.Sc. thesis, Escola de Química, Universidade Federal do Rio de Janeiro.Google Scholar
  13. 13.
    Fabtech (2005), Date accessed: November 11, 2005.Google Scholar
  14. 14.
    Tien, C. J. (2002), Proc. Biochem. 38, 605–613.CrossRefGoogle Scholar
  15. 15.
    Sánchez, A. (1999), FEMS Microbiol. Rev. 23, 527–536.CrossRefGoogle Scholar
  16. 16.
    Hashim, M. A., Tan, H. N., and Chu, K. H. (2000), Sep. Purif. Technol. 19, 19–42.CrossRefGoogle Scholar
  17. 17.
    CONAMA. (1986), Conselho Nacional do Meio Ambiente, Resolução 20.Google Scholar
  18. 18.
    de Araújo, W. S. and Sobrinho, N. M. B. (2000), Floresta Ambiente 7, 167–180 (in Spanish).Google Scholar
  19. 19.
    Rocha, R. C. and Toma, H. E. (2002), Química Nova 25, 624–638 (in Spanish).CrossRefGoogle Scholar
  20. 20.
    da Costa, A. C. A. and de França, F. P. (1997), Bioseparation 6, 335–341.Google Scholar
  21. 21.
    Ahuja, P., Gupta, R., and Saxena, R. K. (1999), Proc. Biochem. 34, 77–85.CrossRefGoogle Scholar

Copyright information

© Humana Press Inc 2006

Authors and Affiliations

  • Francisca Pessôa de França
    • 1
  • Flávia Pinto Padilha
    • 1
  • Antonio Carlos Augusto da Costa
    • 2
  1. 1.Universidade Federal do Rio de Janeiro, Centro de Technologia, Escola de Química, Departamento de Engenharia Bioquímica, Ilha do FundãoCidade UniversitáriaRio de JaneiroBrasil
  2. 2.Departmento de Technologia de Processos BioquímicosUniversidade do Estado do Rie de Janeiro, Centro de Tecnologia e Ciências, Instituto de QuímicaRio de JaneiroBrasil

Personalised recommendations