Skip to main content
Log in

Uncoupled metabolism stimulated by chemical uncoupler and oxic-settling-anaerobic combined process to reduce excess sludge production

  • Original Research Articles
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The effects of three uncoupled metabolic systems (conventional activated sludge process with the addition of 3,3′,4′,5-tetrachlorosalicylanilide [TCS], oxic-settling-anaerobic [OSA] process modified by insertion of a sludge-holding tank in the sludge return line, and TCS and OSA combined process) on reducing excess sludge production were studied. Compared with the control conventional activated sludge process, the most effective system was the combined process, which could reduce excess sludge production by 46.90%. The 180-d operation results confirmed that TCS is an effective chemical uncoupler in reducing the sludge yield but that it had an adverse effect on substrate removal capability, effluent nitrogen concentration, and sludge settleability. The OSA process decreased excess sludge production by only 26% but had less adverse effect on effluent quality and could improve sludge settleability. The effluent total phosphorous concentration of the three systems was slightly lower than of the control unit. Microbial populations were monitored by both microscopic and molecular biologic analysis method (polymerase chain reaction [PCR]-denaturing gradient gel electrophoresis [DGGE]). The presence of TCS caused metazoans to disappear and decreased the number and activity of protozoa. PCR amplification of 16S rRNA and sequent DGGE analysis found a shift in the diversity of the predominant species. The results imply that OSA combined with the chemical uncoupler process may effectively reduce excess sludge yield and not affect process performance significantly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Canales, A., Pareilleux, A., Rols, J. L., Goma, C., and Huyard, A. (1994), Water Sci. Technol. 30, 96–106.

    Google Scholar 

  2. Yasui, H. and Shibata, M. (1994), Water Sci. Technol. 30, 11–20.

    CAS  Google Scholar 

  3. Yasui, H., Nakamura, K., Sakuma, S., Iwasaki, M., and Sakai, Y. (1996), Water Sci. Technol. 34, 395–404.

    Article  CAS  Google Scholar 

  4. Saby, S., Djafer, M., and Chen, G. H. (2002), Water Res. 36, 656–666.

    Article  CAS  Google Scholar 

  5. Springer, A. M. and Higby, C. M. (1996), Tappi J. 79, 162–170.

    CAS  Google Scholar 

  6. Low, E. W., Chase, H. A., Milner, M. G., and Curtis, T. P. (2000), Water Res. 34, 3204–3212.

    Article  CAS  Google Scholar 

  7. Low, E. W. and Chase, H. A. (1998), Water Sci. Technol. 37, 399–402.

    Article  CAS  Google Scholar 

  8. Strand, S. E., Harem, G. H., and Stensel, H. D. (1999) Water Environ. Res. 71, 454–458.

    Article  CAS  Google Scholar 

  9. Yang, X. F., Xie, M. L., and Liu, Y. (2003), Process Biochem. 38, 1373–1377.

    Article  CAS  Google Scholar 

  10. Okey, R. W. and Stensel, H. D. (1993), Toxicol. Environ. Chem. 40, 235–254.

    CAS  Google Scholar 

  11. Mitchell, P. (1961), Nature 191, 144–148.

    Article  CAS  Google Scholar 

  12. Chen, G. H., An, K. J., Saby, S., Brois, E., and Djafer, M. (2003) Water Res. 37, 3855–3866.

    Article  CAS  Google Scholar 

  13. Chudoba, P., Chevalier, J. J., Chang, J., and Capdeville, B. (1991), Water Sci. Technol. 23, 917–926.

    CAS  Google Scholar 

  14. Chudoba, P., Chudoba, J., and Capdeville B. (1992), Water Sci. Technol. 26, 2477–2480.

    CAS  Google Scholar 

  15. Chudoba, P., Morel, A., and Capdeville, B. (1992), Environ. Technol. 13, 761–770.

    Article  CAS  Google Scholar 

  16. Saby, S., Djafer, M., and Chen, G. H. (2003), Water Res. 37, 11–20.

    Article  CAS  Google Scholar 

  17. Lapara, T. M., Konopka, A., and Alleman, J. E. (2000) Water Res. 34, 2723–2726.

    Article  CAS  Google Scholar 

  18. Chen, G. H., Mo, H. K., Saby, S., Yip, W. K., and Liu, Y. (2000), Water Sci. Technol. 42, 189–200.

    CAS  Google Scholar 

  19. Chen, G. H., Mo, H. K., and Liu, Y. (2002), Water Res. 36, 2077–2083.

    Article  CAS  Google Scholar 

  20. Cook, M. and Russell, B. (1994), Appl. Environ. Microbiol. 60, 1942–1948.

    CAS  Google Scholar 

  21. Low, E. W. and Chase, H. A. (1999), Water Res. 33, 1119–1132.

    Article  CAS  Google Scholar 

  22. Greenburg, A. E., Clesceri, L. S., and Eaton, A. D. (1989), Standard Methods for the Examination of Water and Wastewater, 17th ed., American Public Health Association, American Water Works Association and Water Pollution Control Federation, New York.

    Google Scholar 

  23. Urbain, V., Block, J. C., and Manem, J. (1993), Water Res. 27, 829–838.

    Article  CAS  Google Scholar 

  24. Higgins, M. J. and Novak, J. T. (1997), Water Environ. Res. 69, 215–224.

    Article  CAS  Google Scholar 

  25. Mayhew, M. and Stephenson, T. (1998), Water Sci. Technol. 38, 137–144.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fen Xia Ye.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ye, F.X., Li, Y. Uncoupled metabolism stimulated by chemical uncoupler and oxic-settling-anaerobic combined process to reduce excess sludge production. Appl Biochem Biotechnol 127, 187–199 (2005). https://doi.org/10.1385/ABAB:127:3:187

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/ABAB:127:3:187

Index Entries

Navigation