Skip to main content
Log in

Reactive oxygen species, cell growth, and taxol production of Taxus cuspidata cells immobilized on polyurethane foam

  • Original Research Articles
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Dynamic changes in reactive oxygen species (ROS) of Taxus cuspidata cells immobilized on polyurethane foam were investigated and the relation between ROS content and taxol production was discussed. Immobilization shortened the lag period of cell growth and moderately increased H2O2 and O2 −• contents inside the microenvironment within the first 15 d. After 20 d, excessive production of H2O2 and O2 −• was observed accompanied by marked increases in membrane lipid peroxidation and cell membrane permeability. The taxol content of immobilized cells was fourfold that of suspended cells at d 35. The addition of exogenous H2O2 barely affected malondialdehyde content and cell membrane permeability but led to an obvious accumulation of taxol. It is inferred that the intracellular and extracellular H2O2 inside the microenvironment might be one factor promoting taxol biosynthesis under the immobilization stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Schiff, P. B., Fant, J., and Horwitz, S. B., (1979), Nature 277, 665–667.

    Article  CAS  Google Scholar 

  2. Xu, Q. M., Cheng, J. S., Ge, Z. Q., and Yuan, Y. J., (2005), Appl. Biochem. Biotechnol. 125, 11–26.

    Article  CAS  Google Scholar 

  3. Yuan, Y. J., Li, C., Hu, Z. D., Wu, J. C., and Zeng, A. P. (2002), Process Biochem. 38, 193–198.

    Article  CAS  Google Scholar 

  4. Yuan, Y. J., Li, J. C., Ge, Z. Q., and Wu, J. C. (2002), J. Mol. Catal. B.: Enzym. 18, 251–260.

    Article  CAS  Google Scholar 

  5. Yuan, Y. J., Hu, J., Xu, X., Han, J. Y., and Hu, Z. D. (1997), Chin. Tradit. Herb Drugs (China) 28, 12–15.

    Google Scholar 

  6. Seki, M., Ohzora, C., Takeda, M., and Furusaki, T. (1997), Biotechnol. Bioeng. 53, 214–219.

    Article  CAS  Google Scholar 

  7. Rao, S. R., and Ravishankar, G. A. (2002), Biotechnol. Adv. 20, 101–153.

    Article  CAS  Google Scholar 

  8. Mevy, J. P., Rabier, J., Quinsac, A., and Ribaillier, D. (1999), Plant Cell Tissue Org. 57, 163–171.

    Article  CAS  Google Scholar 

  9. Ishida, B. K. (1988), Plant Cell Rep. 7, 270–273.

    Article  CAS  Google Scholar 

  10. Inanc, E., Miller, J. E., and DiBiasio, D. (1996), Biotechnol. Bioeng. 51, 697–702.

    Article  CAS  Google Scholar 

  11. Trück, H. U., Chmiel, H., Hammes, W. P., and Trösch, W. (1990), Appl. Microbiol. Biotechnol. 34, 1–4.

    Article  Google Scholar 

  12. Mittler, R., Vanderauwera, S., Gollery, M., and Van Breusegem, F. (2004), Trends Plant Sci. 9, 490–498.

    Article  CAS  Google Scholar 

  13. Angelova, M. B., Pashova, S. B., and Slokoska, L. S. (2000), Enzyme Microb. Technol. 26, 544–549.

    Article  CAS  Google Scholar 

  14. Kannaiyan, S., Aruna, S. J., Kumari, S. M. P., and Hall, D. O. (1997), J. Appl. Phycol. 9, 167–174.

    Article  Google Scholar 

  15. Sofo, A., Dichio, B., Xiloyannis, C., and Masia A. (2004), Plant Sci. 166, 293–302.

    Article  CAS  Google Scholar 

  16. Suzuki, K., Yano, A., and Shinshi, H. (1999), Plant Physiol. 119, 1465–1472.

    Article  CAS  Google Scholar 

  17. Murphy, T. M., Vu, H., and Nguyen, T. (1998), Plant Physiol. 117, 1301–1305.

    Article  CAS  Google Scholar 

  18. Mukherjee, S. P. and Choudhuri, M. A. (1983), Physiol. Plant 58, 166–170.

    Article  CAS  Google Scholar 

  19. Bellincampi, D., Dipierro, N., Salvi, G., Cervone, F., and De Lorenzo, G. (2000), Plant Physiol. 122, 1379–1385.

    Article  CAS  Google Scholar 

  20. Yuan, Y. J., Li, C., Hu, Z. D., and Wu, J. C. (2001), Enzyme Microb. Technol. 29, 372–379.

    Article  CAS  Google Scholar 

  21. Limoli, C. L., Rola, R., Giedzinski, E., Mantha, S., Huang, T. T., and Fike, J. R. (2004), Proc. Natl. Acad. Sci. USA 101, 16,052–16,057.

    Article  CAS  Google Scholar 

  22. Smith, J., Ladi, E., Mayer-Proschel, M., and Noble, M. (2000), Proc. Natl. Acad. Sci. USA 97, 10,032–10,037.

    CAS  Google Scholar 

  23. Lindsey, K. and Yeoman, M. M. (1983), J. Exp. Bot. 145, 1055–1065.

    Article  Google Scholar 

  24. Chen, C. B. and Dickman, M. B. (2005), Proc. Natl. Acad. Sci. USA 102, 3459–3464.

    Article  CAS  Google Scholar 

  25. Zhao, J., Hu, Q., Guo, Y. Q., and Zhu, W. H. (2001), Plant Sci. 161, 423–431.

    Article  CAS  Google Scholar 

  26. Brodelius, P. and Nilsson, K. (1983), Eur. J. Appl. Microbiol. Biotechnol. 17, 275–280.

    Article  CAS  Google Scholar 

  27. Gillet, F., Roisin, C., Fliniaux, M. A., Jacquin-Dubreuil, A., Barbotin, J. N., and Nava-Saucedo, J. E. (2000), Enzyme Microb. Technol. 26, 229–234.

    Article  Google Scholar 

  28. Allan, A. C. and Fluhr, R. (1997), Plant Cell 9, 1559–1572.

    Article  CAS  Google Scholar 

  29. Han, R. B. and Yuan, Y. J. (2004), Biotechnol. Prog. 20, 507–513.

    Article  CAS  Google Scholar 

  30. Arnold, R. S., Shi, J., Murad, E., Whalen, A. M., Sun, C. Q., Polavarapu, R., Parthasarathy, S., Petros, J. A., and David Lambeth, J. (2001), Proc. Natl. Acad. Sci. USA 98, 5550–5555.

    Article  CAS  Google Scholar 

  31. Barchowsky, A., Roussel, R. R., Klei, L. R., James, P. E., Ganju, N., Smith, K. R., and Dudet, E. J. (1999), Toxicol. Appl. Pharmacol. 159, 65–75.

    Article  CAS  Google Scholar 

  32. Boonstra, J. and Post, J. A. (2004), Gene 337, 1–13.

    Article  CAS  Google Scholar 

  33. Shin, R. and Schachtman, D. P. (2004), Proc. Natl. Acad. Sci. USA 101, 8827–8832.

    Article  CAS  Google Scholar 

  34. Orozco-Cárdenas, M. L., Narváez-Vásquez, J., and Ryan, C. A. (2001), Plant Cell 13, 179–191.

    Article  Google Scholar 

  35. Avsian-Kretchmer, O., Gueta-Dahan, Y., Lev-Yadun, S., Gollop, R., and Ben-hayyim (2004), Plant Physiol. 135, 1685–1696.

    Article  CAS  Google Scholar 

  36. Fridovich, I. (1986), Arch. Biochem. Biophys. 247, 1–11.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying-Jin Yuan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yin, DM., Wu, JC. & Yuan, YJ. Reactive oxygen species, cell growth, and taxol production of Taxus cuspidata cells immobilized on polyurethane foam. Appl Biochem Biotechnol 127, 173–185 (2005). https://doi.org/10.1385/ABAB:127:3:173

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/ABAB:127:3:173

Index Entries

Navigation