Applied Biochemistry and Biotechnology

, Volume 127, Issue 2, pp 125–131 | Cite as

Comparison of bacterial and phage display peptide libraries in search of target-binding motif

  • Mojca Lunder
  • Tomaž Bratkovič
  • Bojan Doljak
  • Samo Kreft
  • Uroš Urleb
  • Borut Štrukelj
  • Nadja Plazar
Original Research Articles

Abstract

Genetic engineering allows modification of bacterial and bacteriophage genes, which code for surface proteins, enabling display of random peptides on the surface of these microbial vectors. Biologic peptide libraries thus formed are used for high-throughput screening of clones bearing peptides with high affinity for target proteins. There are reports of many successful affinity selections performed with phage display libraries and substantially fewer cases describing the use of bacterial display systems. In theory, bacterial display has some advantages over phage display, but the two systems have never been experimentally compared. We tested both techniques in selecting streptavidin-binding peptides from two commercially available libraries. Under similar conditions, selection of phage-displayed peptides to model protein streptavidin proved convincingly better.

Index Entries

Phage display library bacterial display library affinity selection ligand peptide streptavidin 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Scott, J. K. and Smith, G. P. (1990), Science 249, 386–390.PubMedCrossRefADSGoogle Scholar
  2. 2.
    Lu, Z., Murray, K. S., Van Cleave, V., La Vallie, E. R., Stahl, M. L., and McCoy, J. M. (1995), Biotechnology 13(4), 366–372.PubMedCrossRefGoogle Scholar
  3. 3.
    Smith, G. P. and Petrenko, V. A. (1997), Chem. Rev. 97, 391–410.PubMedCrossRefGoogle Scholar
  4. 4.
    Dedova, O., Fletcher, P., Liu, H., Wang, P., Blume, A., Brissette, R., Hsiao, K., Lennick, M., Pillutla, R., and Goldstein, N. (2004), Patent no. US2004023887.Google Scholar
  5. 5.
    McConnell, S. J. and Spinella, D. G. (1999), Patent no. WO9947151.Google Scholar
  6. 6.
    Hyde-DeRuyscher, R., Paige, L. A., Christensen, D. J., et al. (2000), Chem. Biol. 7 (1), 17–25.PubMedCrossRefGoogle Scholar
  7. 7.
    Kay, B. K. and Hamilton, P. T. (2001), Comb. Chem. High Through. Screen. 4, 535–543.Google Scholar
  8. 8.
    Markland, W., Roberts, B. L., and Ladner, R. C. (1996), in Methods in Enzymology, vol. 267, Abelson, J. N. ed., Academic, New York, pp. 28–51.Google Scholar
  9. 9.
    Lunder, M., Bratkovič, T., Kreft, S., and Ŝtrukelj, B. (2005), J. Lipid Res. 46, 1512–1516.PubMedCrossRefGoogle Scholar
  10. 10.
    Bratkovič, T., Lunder, M., Popovič, T., Kreft, S., Turk, B., Štrukelj, B., and Urleb, U. (2005), Biochem. Biophys. Res. Commun. 332, 897–903.PubMedCrossRefGoogle Scholar
  11. 11.
    Sparks, A. B., Adey, N. B., Cwirla, S., and Kay, B. K. (1996), in Phage Display of Peptides and Proteins: A Laboratory Manual, Kay, B. K., Winter, J., and McCafferty, J., eds., Academic, San Diego, pp. 227–253.Google Scholar
  12. 12.
    Kay, B. K., Kasanov, J., and Yamabhai, M. (2001), Methods 24, 240–246.PubMedCrossRefGoogle Scholar
  13. 13.
    Smith, G. P. and Scott, J. K. (1993), in Methods in Enzymology, vol. 217, Wu, R., ed., Academic, New York, pp. 228–257.Google Scholar
  14. 14.
    Cwirla, S. E., Peters, E. A., Barrett, R. W., and Dower, W. J. (1990), Proc. Natl. Acad. Sci. USA 87, 6378–6382.PubMedCrossRefADSGoogle Scholar
  15. 15.
    van Zonnenveld, A. J., van den Berg, B. M. M., van Meijer, M., and Pannekoek, H. (1995), Gene 167, 49–52.CrossRefGoogle Scholar
  16. 16.
    Yu, H., Dong, X., and Sun Y. (2004), Biochem. Eng. J. 18, 169–175.CrossRefGoogle Scholar
  17. 17.
    Brown, C. K., Modzelewski, R. A., Johnson, C. S., and Wong, M. K. K. (2000), Ann. Surg. Oncol. 7(10), 743–749.PubMedCrossRefGoogle Scholar
  18. 18.
    Lu, Z., Tripp, B. C., and McCoy, J. M. (1998), Methods Mol. Biol. 87, 265–280.PubMedGoogle Scholar
  19. 19.
    Brown, S. (1997), nat. Biotechnol. 15(3), 269–272.PubMedCrossRefGoogle Scholar
  20. 20.
    Tripp, B. C., Lu, Z., Bourque, K., Sookdeo, H., and McCoy, J. M. (2001), Protein Eng. 14(5), 367–377.PubMedCrossRefGoogle Scholar
  21. 21.
    Khan, A. S., Thompson R., Cao, C., and Valdes, J. J. (2003), Biotechnol. Lett., 25(19), 1671–1675.PubMedCrossRefGoogle Scholar
  22. 22.
    Hansson, M., Samuelson, P., Gunneriusson, E., and Stahl, S. (2001), Comb. Chem. High Through. Screen. 4(2), 171–184.Google Scholar
  23. 23.
    Zitzmann, S., Kramer, S., Mier, W., Mahmut, M., Fleig, J., Atmann, A., Eisenhut, M., and Haberkorn, U. (2005), J. Nucl. Med. 46(5), 782–785.PubMedGoogle Scholar
  24. 24.
    Giebel, L. B., Cass, R. T., Milligan, D. L., Young, D. C., Arze, R., and Johnson, C. R. (1995), Biochemistry 34(47), 15,430–15,435.CrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2005

Authors and Affiliations

  • Mojca Lunder
    • 1
  • Tomaž Bratkovič
    • 1
    • 2
  • Bojan Doljak
    • 1
  • Samo Kreft
    • 1
  • Uroš Urleb
    • 1
    • 2
  • Borut Štrukelj
    • 1
    • 3
  • Nadja Plazar
    • 4
  1. 1.Department of Pharmaceutical Biology, Faculty of PharmacyUniversity of LjubljanaLjubljanaSlovenia
  2. 2.Lek Pharmaceutical CompanyLjubljanaSlovenia
  3. 3.Jožef Stefan InstituteLjubljanaSlovenia
  4. 4.College of Health Care of IzolaUniversity of PrimorskaIzolaSlovenia

Personalised recommendations