Skip to main content
Log in

Evaluation of a new system for developing particulate enzymes based on the surface (S)-layer protein (RsaA) of Caulobacter crescentus

Fusion with the β-1,4-glycanase (cex) from the cellulolytic bacterium cellulomonas fimi yields a robust, catalytically active product

  • Original Research Articles
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Immobilized biocatalysts, including particulate enzymes, represent an attractive tool for research and industrial applications because they combine the specificity of native enzymes with the advantage that they can be readily separated from end product and reused. We demonstrated the use of the Caulobacter crescentus surface (S)-layer protein (RsaA) secretion apparatus for the generation of particulate enzymes. Specifically, a candidate protein made previously by fusion of the β-1,4-glycanase (Cex) from the cellulolytic bacterium Cellulomonas fimi with the C-terminus of RsaA was evaluated. Cex/RsaA cleaved the glycosidic linkage in the artificial substrate p-nitrophenyl-β-d-cellobioside with a K M similar to that of native Cex (1.1 mM for Cex/RsaA vs 0.60 mM for Cex), indicating that the particulate Cex enzyme was able to bind substrate with wild-type affinity. By contrast, the k cat value was significantly reduced (0.08 s−1 for Cex/RsaA vs 15.8 s−1 for Cex)cat, likely owing to the fact that the RsaA C-terminus induces spontaneous unstructured aggregation of the recombinant protein. Here, we demonstrated that not only can an RsaA fusion protein be cheaply produced and purified to a high yield (76 mg/L of dry wt for Cex/RsaA), but it can also be efficiently recycled. The Caulobacter S-layer secretion system therefore offers an attractive new model system for the production of particulate biocatalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Freeman, A., Abramov, S., and Georgiou, G. (1999), Biotechnol. Bioeng., 62, 155–159.

    Article  PubMed  CAS  Google Scholar 

  2. Strauss, A., and Gotz, F. (1996), Mol. Microbiol. 21, 491–500.

    Article  PubMed  CAS  Google Scholar 

  3. Lee, T. S., Turner, M. K., and Lye, G. J. (2002), Biotechnol. Prog. 18, 43–50.

    Article  MATH  PubMed  CAS  Google Scholar 

  4. Hoskin, F. C., Walker, J. E., and Stote, R. (1999), Chem. Biol. Interact 119–120, 439–444.

    Article  PubMed  Google Scholar 

  5. Haring, D., and Schreier, P. (1999), Curr. Opin. Chem. Biol. 3, 35–38.

    Article  PubMed  CAS  Google Scholar 

  6. Margolin, A. L. (1996), Trends Biotechnol. 14, 223–230.

    Article  CAS  Google Scholar 

  7. Ellerby, L. M., Nishida, C. R., Nishida, F., Yamanaka, S. A., Dunn, B., Valentine, J. S., and Zink, J. I. (1992), Science 255, 1113–1115.

    Article  PubMed  ADS  CAS  Google Scholar 

  8. Shchipunov, Y. A., Karpenko, T. Y., Bakunina, I. Y., Burtseva, Y. V., and Zvyagintseva, T. N. (2004), J. Biochem. Biophys. Methods 58, 25–38.

    Article  PubMed  CAS  Google Scholar 

  9. Trivedi, B. (1999), Nat. Biotechnol. 17, 339–341.

    Article  PubMed  CAS  Google Scholar 

  10. Spagna, G., Barbagallo, R. N., Casarini, D., and Pifferi, P. G. (2001), Enzyme Microb. Technol. 28, 427–438.

    Article  PubMed  CAS  Google Scholar 

  11. Ichijo, H., Nagasawa, J., and Yamauchi, A. (1990), J. Biotechnol. 14, 169–178.

    Article  PubMed  CAS  Google Scholar 

  12. Pessela, B. C., Mateo, C., Fuentes, M., Vian, A., Garcia, J. L., Carrascosa, A. V., Guisan, J. M., and Fernandez-Lafuente, R. (2004), Biotechnol. Prog. 20, 388–392.

    Article  PubMed  CAS  Google Scholar 

  13. Min, D. J., Andrade, J. D., and Stewart, R. J. (1999), Anal. Biochem. 270, 133–139.

    Article  PubMed  CAS  Google Scholar 

  14. Alvaro, G., Fernandez-Lafuente, R., Blanco, R. M., and Guisan, J. M. (1990), Appl. Biochem. Biotechnol. 26, 181–195.

    PubMed  CAS  Google Scholar 

  15. Cao, R., Gu, Z., Patterson, G. D., and Armitage, B. A. (2004), J. Am. Chem. Soc. 126, 726, 727.

    Article  PubMed  CAS  Google Scholar 

  16. Poindexter, J. S. (1981), Microbiol. Rev. 45, 123–179.

    PubMed  CAS  Google Scholar 

  17. Shapiro, L. (1976), Annu. Rev. Microbiol. 30, 377–407.

    Article  PubMed  CAS  Google Scholar 

  18. Smit, J. (1986), in Bacterial Outer Membranes as Model Systems (Inouye, M., ed.), John Wiley & Sons, New York, pp. 343–376.

    Google Scholar 

  19. Sleytr, U. B. and Messner, P. (1983), Annu. Rev. Microbiol. 37, 311–339.

    Article  PubMed  CAS  Google Scholar 

  20. Sara, M. and Sleytr, U. B. (2000), J. Bacteriol. 182, 859–868.

    Article  PubMed  CAS  Google Scholar 

  21. Sara, M. and Sleytr, U. B. (1996), Prog. Biophys. Mol. Biol. 65, 83–111.

    Article  PubMed  CAS  Google Scholar 

  22. Messner, P. and Sleytr, U. B. (1992), Adv. Microb. Physiol. 33, 213–275.

    Article  PubMed  CAS  Google Scholar 

  23. Smit, J., Engelhardt, H., Volker, S., Smith, S. H., and Baumeister, W. (1992), J. Bacteriol. 174 6527–6538.

    PubMed  CAS  Google Scholar 

  24. Awram, P. and Smit, J. (1998), J. Bacteriol. 180, 3062–3069.

    PubMed  CAS  Google Scholar 

  25. Bingle, W. H., Nomellini, J. F., and Smit, J. (1997), J. Bacteriol. 179, 601–611.

    PubMed  CAS  Google Scholar 

  26. Bingle, W. H., Nomellini, J. F., and Smit, J. (2000), J. Bacteriol. 182, 3298–3301.

    Article  PubMed  CAS  Google Scholar 

  27. Nomellini, J., Toporowski, M. C., and Smit, J. (2004), in Expression Technologies: Current Status and Future Trends (Baneyx, F., ed.), Horizon Scientific Press, Norfolk, UK, pp. 477–524.

    Google Scholar 

  28. Nierman, W. C., Feldblyum, T. V., Laub, M. T., et al. (2001), Proc. Natl. Acad. Sci. USA 98, 4136–4141.

    Article  PubMed  ADS  CAS  Google Scholar 

  29. Umelo-Njaka, E., Nomellini, J. F., Bingle, W. H., Glasier, L. G., Irvin, R. T., and Smit, J. (2001), Vaccine 19, 1406–1415.

    Article  PubMed  CAS  Google Scholar 

  30. Umelo-Njaka, E., Bingle, W. H., Borchani, F., Le, K. D., Awram, P., Blake, T., Nomellini, J. F., and Smit, J. (2002), J. Bacteriol. 184, 2709–2718.

    Article  PubMed  CAS  Google Scholar 

  31. Gilkes, N. R., Claeyssens, M., Aebersold, R., Henrissat, B., Meinke, A., Morrison, H. D., Kilburn, D. G., Warren, R. A., and Miller, R. C. Jr. (1991), Eur. J. Biochem. 202, 367–377.

    Article  PubMed  CAS  Google Scholar 

  32. White, A., Withers, S. G., Gilkes, N. R., and Rose, D. R. (1994), Biochemistry 33, 12,546–12,552.

    CAS  Google Scholar 

  33. Tull, D., Withers, S. G., Gilkes, N. R., Kilburn, D. G., Warren, R. A., and Aebersold, R. (1991), J. Biol. Chem. 266, 15,621–15,625.

    CAS  Google Scholar 

  34. Tull, D., and Withers, S. G. (1994), Biochemistry 33, 6363–6370.

    Article  PubMed  CAS  Google Scholar 

  35. Notenboom, V., Birsan, C., Nitz, M., Rose, D. R., Warren, R. A., and Withers, S. G. (1998), Nat. Struct. Biol. 5, 812–818.

    Article  PubMed  CAS  Google Scholar 

  36. Bingle, W. H., Le, K. D., and Smit, J. (1996), Can. J. Microbiol. 42, 672–684.

    Article  PubMed  CAS  Google Scholar 

  37. Langsford, M. L., Gilkes, N. R., Singh, B., Moser, B., Miller, R. C. Jr., Warren, R. A., and Kilburn, D. G. (1987), FEBS Lett. 225, 163–167.

    Article  PubMed  CAS  Google Scholar 

  38. Kempton, J. B., and Withers, S. G. (1992), Biochemistry 31, 9961–9969.

    Article  PubMed  CAS  Google Scholar 

  39. Leatherbarrow, R. J. (1990), Version 2.0 Ed., Erithacus Software, Staines, UK.

    Google Scholar 

  40. Kirk, O., Borchert, T. V., and Fuglsang, C. C. (2002), Curr. Opin. Biotechnol. 13, 345–351.

    Article  PubMed  CAS  Google Scholar 

  41. van Beilen, J. B., and Li, Z. (2002), Curr. Opin. Biotechnol. 13, 338–344.

    Article  PubMed  CAS  Google Scholar 

  42. Liang, J. F., Li, Y. T., and Yang, V. C. (2000), J. Pharm. Sci. 89, 979–990.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Smit.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Duncan, G., Tarling, C.A., Bingle, W.H. et al. Evaluation of a new system for developing particulate enzymes based on the surface (S)-layer protein (RsaA) of Caulobacter crescentus . Appl Biochem Biotechnol 127, 95–110 (2005). https://doi.org/10.1385/ABAB:127:2:095

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/ABAB:127:2:095

Index Entries

Navigation