Skip to main content
Log in

Effect of pH and phosphate on trapping capacity of various heavy metal ions with ferritin reactor in flowing seawater

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

We describe a protein reactor consisting of native liver ferritin of Dasyatis akajei (DALF) and a dialysis bag. Our goal was to study a ferritin reactor for its capacity to trap various heavy metal ions (M2+) in flowing seawater. The reactor is sensitive and inexpensive and can be operated by nonprofessional technicians. A positive relationship between the number of trapped M2+ with the DALF reactor and its concentration in the flowing seawater was observed. Both the pH in the medium and the phosphate content within the ferritin cavity strongly affected trapping capacity. It was found that the ferritin released its phosphate compound directly with a shift in pH without the need for releasing reagent, which differs from the phosphate release characteristics of horse spleen ferritin, as previously described. This behavior evidently makes the trapping capacity with the ferritin reactor weaken, indicating that this trapping capacity is tightly connected to its phosphate compound. Our study shows that a self-regulation ability of the ferritin shell rather than its phosphate compound plays an important role in controlling the rate and capacity of trapping M2+. The ferritin reactor was constructed to monitor the contamination level of M2+ in flowing seawater. Our preliminary data along with fieldwork indicate that the DALF reactor is an analytical means for effectively monitoring the contamination level of M2+ in flowing seawater.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andrews, S. C., Arosio, P., Bottke, W., Briat, J. F., Vondarl, M., Harrison, P. M., Laulhere, J. P., Levi, S., Lobreaux, S., and Yewdall, S. J. (1992), J. Inorg. Biochem. 47, 161–174.

    Article  PubMed  CAS  Google Scholar 

  2. Harrison, P. M. and Arosio, P. (1996), Biochim. Biophys. Acta 1275, 161–203.

    Article  PubMed  Google Scholar 

  3. Chasteen, N. D. (1998), in Metal Ions in Biological Systems, vol. 35, Sigel, A. and Sigel, H., eds., Marcel Dekker, New York, pp. 479–514.

    Google Scholar 

  4. Watt, G. D., Jacobs, D., and Frankel, R. B. (1988), Proc. Natl. Acad. Sci. USA 85, 7457–7461.

    Article  PubMed  CAS  ADS  Google Scholar 

  5. Kong, B., Huang, H. Q., Lin, Q. M., Kim, W. S., Cai, Z. W., Cao, T. M., Miao, H., and Luo, D. M. (2003), J. Protein Chem. 22, 61–70.

    Article  PubMed  CAS  Google Scholar 

  6. Price, D. J. and Joshi J. G. (1984), Toxicology 31, 151–163.

    Article  PubMed  CAS  Google Scholar 

  7. Price, D. J. and Joshi, J. G. (1983), J. Biol. Chem. 258, 10,873–10,880.

    CAS  Google Scholar 

  8. Pead, S., Durrant, E., Webb, B., Larsen, C., Heaton, D., Johnson, J., and Watt, G. D. (1995), J. Inorg. Biochem. 59, 15–27.

    Article  PubMed  CAS  Google Scholar 

  9. Meldrum, F. C., Wade, V. J., Nimmo, D. L., Heywood, B. R., and Mann, S. (1991), Nature 349, 684–687.

    Article  CAS  ADS  Google Scholar 

  10. Meldrum, F. C., Douglas, T., Levi, S., Arosio, P., and Mann, S. (1995), J. Inorg. Biochem 58, 59–68.

    Article  PubMed  CAS  Google Scholar 

  11. Meldrum, F. C., Heywood, B. R., and Mann, S. (1992), Science 257, 522, 523.

    Article  PubMed  CAS  ADS  Google Scholar 

  12. Hainfeld, J. F. (1992), Proc. Natl. Acad. Sci. USA 89, 11,064–11,068.

    Article  CAS  Google Scholar 

  13. Wong, K.K.W. and Mann, S. (1996), Adv. Mater. 8, 928–932.

    Article  CAS  Google Scholar 

  14. Douglas, T. and Stark, V. T. (2000), Inorg. Chem. 39, 1828–1830.

    Article  PubMed  CAS  Google Scholar 

  15. Huang, H. Q., Lin, Q. M., and Lou, Z. B. (2000), J. Protein Chem. 19, 441–447.

    Article  PubMed  CAS  Google Scholar 

  16. Blackmore, G. (1998). Sci. Total Environ. 214, 21–48.

    Article  PubMed  CAS  Google Scholar 

  17. Lee, C. L., Fang, M. D., and Hsieh, M. T. (1998), Mar. Pollut. Bull. 36, 464–471.

    Article  CAS  Google Scholar 

  18. Huang, H. Q., Lin, Q. M., Kong, B., Zeng, R. Y., Qiao, Y. H., Chen, C. H., Zhang, F. Z., and Xu, L. S. (1999), J. Protein Chem. 18, 497–504.

    Article  PubMed  CAS  Google Scholar 

  19. Xie, X. Q. and Yan, L. M. (2002), J. Oceanograph Taiwan Strait 21, 147–153.

    Google Scholar 

  20. Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall, R. J. (1951), J. Biol. Chem. 193, 265–275.

    PubMed  CAS  Google Scholar 

  21. Cooper, T. G. (1977), in The Tools of Biochemistry, John Wiley, New York, pp. 36–96.

    Google Scholar 

  22. Huang, H. Q., Xiao, Z. Q., Lin, Q. M., and Chen, P. (2005), Anal. Chem. 77, 1920–1927.

    Article  PubMed  CAS  Google Scholar 

  23. Johnson, J. L., Cannon, M., Watt, R. K., Frankel, R. B., and Watt, G. D. (1999), Biochemistry 38, 6706–6713.

    Article  PubMed  CAS  Google Scholar 

  24. Lin, Q. M., Qiao, Y. H., and Huang, H. Q. (1999), J. Xiamen Univ. 38, 871–876.

    CAS  Google Scholar 

  25. Huang, H. Q., Watt, R. K., Frankel, R. B., and Watt, G. D. (1993). J. Xiamen Univ. 32, 628–633.

    CAS  Google Scholar 

  26. Huang, H. Q., Watt, R. K., Frankel, R. B., and Watt, G. D. (1993), Biochemistry 32, 1681–1687.

    Article  CAS  Google Scholar 

  27. Huang, H. Q., Zhang, F. Z., and Xu, L. S. (1997), Acta Zool. Sin 43, 170–177.

    CAS  Google Scholar 

  28. Huang, H. Q., Cao, T. M., and Lin, Q. M. (2004), Environ. Sci. Technol. 38, 2476–2481.

    Article  PubMed  CAS  Google Scholar 

  29. Chen, C. H., Wang, Z. F., and Lu, H. Y. (1999), Acta Oceanologica Sin. 21, 42–47.

    Google Scholar 

  30. Dedman, D. J., Treffry, A., and Harrison, P. M. (1992), Biochem. J. 287, 515–520.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to He-Qing Huang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kong, B., Huang, HQ., Lin, QM. et al. Effect of pH and phosphate on trapping capacity of various heavy metal ions with ferritin reactor in flowing seawater. Appl Biochem Biotechnol 126, 133–148 (2005). https://doi.org/10.1385/ABAB:126:2:133

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/ABAB:126:2:133

Index Entries

Navigation