Skip to main content
Log in

Optimization of culture medium and conditions for penicillin acylase production by streptomyces lavendulae ATCC 13664

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The culture medium for Streptomyces lavendulae ATCC 13664 was optimized on a shake-flask scale by using a statistical factorial design for enhanced production of penicillin acylalse. This extracellularenzyme recently has been reported to bea penicillin Kacylase, presenting also high hydrolytic activity against penicillin V and other natural aliphatic penicillins such as penicillin K, penicillin F, and penicillin dihydroF,. The factorial design indicated that the main factors that positively affect penicillin acylase production by S. lavendulae were the concentration of yeast extract and the presence of oligoelements in the fermentation medium, whereas the presence of olive oil in the medium had no effect on enzyme production. An initial concentration of 2.5% (w/v) yeast extract and 3 μg/mL of CuSO4·5H2O was found to be best for acylase production. In such optimized culture medium, fermentation, of the microorganism yielded 289 IU/L of enzyme in 72 h when employing a volume medium/volume flask ratio of 0.4 and a 300-rpm shaking speed. The presence of copper, alone and in combination with other metals, stimulated biomass as well as penicillin acylase production. The time course of penicillin acylase production was also studied in the optimized medium and conditions. Enzyme production showed catabolite repression by different carbon sources such as glucose, lactose, citrate, glycerol, and glycine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arroyo, M., de la Mata, I., Acebal, C., and Castillón, M. P. (2003), Appl. Microbiol. Biotechnol. 60, 507–514.

    PubMed  CAS  Google Scholar 

  2. Shewale, J. G. and Sudhakaran, V. K. (1997), Enzyme Microb. Technol. 20, 402–410.

    Article  CAS  Google Scholar 

  3. Torres, R., Ramón, F., de la Mata, I., Acebal, C., and Castillón, M. P. (1999), Appl. Microbiol. Biotechnol. 53, 81–84.

    Article  PubMed  CAS  Google Scholar 

  4. Torres-Guzmán, R., de la Mata, I., Torres-Bacete, J., Arroyo, M., Castillón, M. P., and Acebal, C. (2002), Biochem. Biophys. Res. Commun. 291, 593–597.

    Article  PubMed  CAS  Google Scholar 

  5. Sio, C. F. and Quax, W. J. (2004), Curr. Opin. Biotechnol. 15, 349–355.

    Article  PubMed  CAS  Google Scholar 

  6. Junqua, M., Duran, R., Gancet, C., and Goulas, P. (1997), Appl. Microbiol. Biotechnol. 48, 730–734.

    Article  CAS  Google Scholar 

  7. Gawande, B. N., Singh, R. K., Chauhan, A. K., Goel, A., and Patkar, A. Y. (1998), Enzyme Microb. Technol. 22, 288–291.

    Article  CAS  Google Scholar 

  8. Sunitha, K., Kim, Y.-O., Lee, J.-K., and Oh, T.-K. (2000), Biochem. Eng. J. 5, 51–56.

    Article  CAS  Google Scholar 

  9. Seth, M. and Chand, S. (2000), Process Biochem. 36, 39–44.

    Article  CAS  Google Scholar 

  10. Kalil, S. J., Suzan, R., Maugeri, F., and Rodrigues, M. I. (2001), Appl. Biochem. Biotechnol. 94, 257–264.

    Article  PubMed  CAS  Google Scholar 

  11. Abdel-Fattah, Y. R. and Olama, Z. A. (2002), Process Biochem. 38, 115–122.

    Article  CAS  Google Scholar 

  12. Chen, Q.-H., He, G.-Q., and Ali, M. A. M. (2002), Enzyme Microb. Technol. 30, 667–672.

    Article  CAS  Google Scholar 

  13. Burket, J. F. M., Maugeri, F., and Rodriguez, M. I. (2004), Bioresour. Technol. 91, 77–84.

    Article  CAS  Google Scholar 

  14. Tang, X.-J., He, G.-Q., Chen, Q.-H., Zhang, X.-Y., and Ali, M. A. M. (2004), Bioresour. Technol. 93, 175–181.

    Article  PubMed  CAS  Google Scholar 

  15. Bradford, M. H. (1976), Anal. Biochem. 72, 248–274.

    Article  PubMed  CAS  Google Scholar 

  16. Haaland, P. D. (1989), Experimental Design in Biotechnology, Marcel Dekker, New York.

    Google Scholar 

  17. Sudhakran, V. K. and Shewale, J. G. (1990), J. Microb. Biotechnol. 5, 66–74.

    Google Scholar 

  18. Chauhan, S., Iyengar, M. R. S., and Chattoo, B. B. (1998), J. Basic Microbiol. 38, 173–179.

    Article  CAS  Google Scholar 

  19. Vandamme, E. J. and Voets, J. P. (1975), Experientia 31, 140–143.

    Article  PubMed  CAS  Google Scholar 

  20. Carlsen, F. and Emborg, C. (1981), Biotechnol. Lett. 3, 375–378.

    Article  CAS  Google Scholar 

  21. Stoppock, E. and Wagner, F. (1983), Biotechnol. Lett. 8, 503–508.

    Article  Google Scholar 

  22. Kieser, T. and Hopwood, D. A. (1991), Methods Enzymol. 294, 430–458.

    Article  Google Scholar 

  23. Ueda, K., Endo, K., Tacaño, H., Nishimoto, M., Kido, Y., Tomaru, Y., Matsuda, K., and Beppu, T. (2000), Antonie van Leeuwenhoek 78, 263–268.

    Article  PubMed  CAS  Google Scholar 

  24. Dionigi, C. P., Ahten, T. S., and Wartelle, L. H. (1996), J. Ind. Microbiol. 17, 84–88.

    Article  CAS  Google Scholar 

  25. Coelho, R. R. and Linhares, L. F. (1993), Biol. Fertil. Soils 15, 220–224.

    Article  CAS  Google Scholar 

  26. Mason, H. S. (1965), Annu. Rev. Biochem. 34, 595–634.

    Article  PubMed  CAS  Google Scholar 

  27. Lerch, K. (1981), in Metal Ions in Biological Systems, vol. 13, Siegel, H., ed., Marcel Dekker, New York, pp. 143–186.

    Google Scholar 

  28. Tsai, T.-Y. and Lee, Y.-H. W. (1998), J. Biol. Chem. 273, 19,243–19,250.

    CAS  Google Scholar 

  29. Jones, A. M. and Porter, M. A. (1998), J. Ind. Microbiol. Biotechnol. 21, 203–207.

    Article  CAS  Google Scholar 

  30. Junker, B., Mann, Z., Gailiot, P., Byrne, K., and Wilson, J. (1998), Biotechnol. Bioeng. 5, 580–588.

    Article  Google Scholar 

  31. Arroyo, M., Torres, R., de la Mata, I., Castillón, M. P., and Acebal, C. (1999), Enzyme Microb. Technol. 25, 378–383.

    Article  CAS  Google Scholar 

  32. Arroyo, M., Torres, R., de la Mata, I., Castillón, M. P., and Acebal, C. (2000), Enzyme Microb. Technol. 27, 122–126.

    Article  PubMed  CAS  Google Scholar 

  33. Arroyo, M., Torres-Guzmán, R., de la Mata, I., Castillón, M. P., and Acebal, C. (2000), Biotechnol. Prog. 16, 368–371.

    Article  PubMed  CAS  Google Scholar 

  34. Torres-Bacete, J., Arroyo, M., Torres-Guzmán, R., de la Mata, I., Castillón, M. P., and Acebal, C. (2000), Biotechnol. Lett. 22, 1011–1014.

    Article  CAS  Google Scholar 

  35. Torres-Bacete, J., Arroyo, M., Torres-Guzmán, R., de la Mata, I., Castillón, M. P., and Acebal, C. (2000), Biotechnol. Appl. Biochem. 32, 173–177.

    Article  PubMed  CAS  Google Scholar 

  36. Torres-Bacete, J., Arroyo, M., Torres-Guzmán, R., de la, Mata, I., Castillón, M. P., and Acebal, C. (2001), J. Chem. Technol. Biotechnol. 76, 525–528.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Pilar Castillón.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Torres-Bacete, J., Arroyo, M., Torres-Guzmán, R. et al. Optimization of culture medium and conditions for penicillin acylase production by streptomyces lavendulae ATCC 13664. Appl Biochem Biotechnol 126, 119–131 (2005). https://doi.org/10.1385/ABAB:126:2:119

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/ABAB:126:2:119

Index Entries

Navigation