Advertisement

Applied Biochemistry and Biotechnology

, Volume 126, Issue 2, pp 93–117 | Cite as

Simulation of large-scale production of a soluble recombinant protein expressed in Escherichia coli using an intein-mediated purification system

  • Shamik S. Sharma
  • Shaorong Chong
  • Sarah W. Harcum
Article

Abstract

Inteins are self-cleavalbe proteins that under reducing conditions can be cleaved from a recombinant target protein. Industrially, an intein-based system could potentially reduce production costs of recombinant proteins by facilitating a highly selective affinity purification using an inexpensive substrate such as chitin. In this study, SuperPro® Designer was used to simulate the large-scale recovery of a soluble recombinant protein expressed in Escherichia coli using an intein-mediated purification process based on the commercially available IMPACT® system. The intein process was also compared with a conventional process simulated by SuperPro. The intein purification process initially simulated was significantly more expensive than the conventional process, primarily owing to the properties of the chitin resin and high reducing-agent (dithiothreitol [DTT]) raw material cost. The intein process was sensitive to the chitin resin binding capacity, cleavage efficiency of the intein fusion protein, the size of the target protein relative to the intein tag, and DTT costs. An optimized intein purification process considerably reduced costs by simulating an improved chitin resin and alternative reduced agents. Thus, to realize the full potential of intein purification processes, research is needed to improve the properties of chitin resin and to find alternative, inexpensive raw materials.

Index Entries

Chitin process simulation recombinant protein production intein economic analysis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Petrides, D. P., Koulouris, A., and Lagonikos, P. T. (2002), Pharm. Eng. 22, 56–65.Google Scholar
  2. 2.
    Rouf, S. A., Douglas, P. L., Moo-Yoong, M., and Scharer, J. M. (2001), Biochem. Eng. J. 8, 229–234.CrossRefGoogle Scholar
  3. 3.
    Shanklin, T., Roper, K., Yegeswaran, P. K., and Marten, M. R. (2001), Biotechnol. Bioeng. 72, 483–489.PubMedCrossRefGoogle Scholar
  4. 4.
    Chong, S. R., Williams, K. S., Wotkowicz, C., and Xu, M. Q. (1998), J. Biol. Chem. 273, 10,567–10,577.CrossRefGoogle Scholar
  5. 5.
    Chong, S. R., Montello, G. E., Zhang, A. H., Cantor, E. J., Liao, W., Xu, M. Q., and Benner, J. (1998), Nucleic Acids Res. 26, 5109–5115.PubMedCrossRefGoogle Scholar
  6. 6.
    Hong, S. H., Toyama, M., Maret, W., and Murooka, Y. (2001), Protein Express. Pur. 21, 243–250.CrossRefGoogle Scholar
  7. 7.
    Wu, C., Seitz, P. K., and Falzon, M. (2000), Mol. Cell. Endocrinol. 70, 163–174.CrossRefGoogle Scholar
  8. 8.
    Chong, S. H., Mersha, F. B., Comb, D. G., et al. (1997), Gene 192, 271–281.PubMedCrossRefGoogle Scholar
  9. 9.
    Southworth, M., Amaya, K., Evans, T., Xu, M., and Perler, F. (1999), Biotechniques 27, 110–120.PubMedGoogle Scholar
  10. 10.
    Mathys, S., Evans, T., Chute, I., Wu, H., Chong, S., Benner, J., Liu, X., and Xu, M. (1999), Gene 231, 1–13.PubMedCrossRefGoogle Scholar
  11. 11.
    Zhang, A. H., Gonzalez, S. M., Cantor, E. J., and Chong, S. R. (2001), Gene 275, 241–252.PubMedCrossRefGoogle Scholar
  12. 12.
    Wood, D. W., Wu, W., Belfort, G., Derbyshire, V., and Belfort, M. (1999), Nat. Biotechnol. 17, 889–892.PubMedCrossRefGoogle Scholar
  13. 13.
    Wood, D. W., Derbyshire, V., Wu, W., Chartrain, M., Belfort, M., and Belfort, G. (2000), Biotech. Prog. 16, 1055–1063.CrossRefGoogle Scholar
  14. 14.
    Thomson, C. A. and Ananthanarayanan, V. S. (2001), Prot. Expr. Purif. 23, 8–13.CrossRefGoogle Scholar
  15. 15.
    Grzybowska, B., Szweda, P., and Synowiecki, J. (2004), Mol. Biotechnol. 26, 101–109.PubMedCrossRefGoogle Scholar
  16. 16.
    Carrio, M. M. and Villaverde, A. (2002), J. Biotechnol. 96, 3–12.PubMedCrossRefGoogle Scholar
  17. 17.
    Jordan, G. L. and Harcum, S. W. (2002), J. Ind. Microbiol. Biotechnol. 28, 74–80.PubMedCrossRefGoogle Scholar
  18. 18.
    Ernst, S., Garro, O. A., Winkler, S., Venkatarnaman, G., Langer, R., Cooney, C. L., and Sasisekharan, R. (1997), Biotechnol. Bioeng. 53, 575–582.CrossRefGoogle Scholar
  19. 19.
    Ladisch, M. (2001), Bioseparations Engineering: Principles, Practice, and Economics, 1st ed., John Wiley & Sons, Indianapolis.Google Scholar
  20. 20.
    Protein Purification—Handbook. (2001), Amersham Biosciences AB, Uppsala, Sweden.Google Scholar
  21. 21.
    Sharma, S. S., Zhang, A., Wang, H., Harcum, S. W., and Chong, S. (2003), Biotech. Prog. 19, 1085–1090.CrossRefGoogle Scholar
  22. 22.
    Datar, R. V., Cartwright, T., and Rosen, C. G. (1993), Bio/Technology 11, 349–357.PubMedCrossRefGoogle Scholar
  23. 23.
    Evangelista, R. L., Kusnadi, A. R., Howard, J. A., and Nikolov, N. L. 1998), Biotech. Prog. 14, 607–614.CrossRefGoogle Scholar
  24. 24.
    Petrides, D. P., Sapidou, E., and Calandranis, J. (1995), Bioitechnol. Bioeng. 48, 529–541.CrossRefGoogle Scholar
  25. 25.
    Brierley, R. A., Abrams, J. N., Hanson, J. M., and Maslanka, F. C. (2001), US patent 6,207,806 B1.Google Scholar
  26. 26.
    Koths, K. Thomson, J., Kunitani, M., Wilson, K., and Hanisch, W. (1986), US patent 4,569,790.Google Scholar
  27. 27.
    Stern, A. S. (1998), US patent 5,831,022.Google Scholar
  28. 28.
    Cantor, E. J. and Chong, S. R. (2001), Prot. Expr. Purif. 22, 135–140.CrossRefGoogle Scholar
  29. 29.
    Harrison, R. G., Todd, P., Rudge, S. R., and Petrides, D. P. (2003), Bioseparations Science and Engieering, Oxford University Press, New York.Google Scholar
  30. 30.
    Peters, M. S. and Timmerhaus, K. D. (1991), Plant Design and Economics for Chemical Engineers, 4th ed., McGraw-Hill, New York.Google Scholar
  31. 31.
    Garnett, D. I. and Patience, G. S. (1993), Chem. Eng. Prog. 89, 76–78.Google Scholar
  32. 32.
    Roberts, G. A. F. and Taylor, K. E. (1988), in Chitin and Chitosan—Sources, Chemistry, Biochemistry, Physical Properties and Applications, Skjak-Braek, G., Anthonsen, T., and Sandford, P., eds., Elsevier Applied Science, London, pp. 577–583.Google Scholar
  33. 33.
    Seo, H. and Kinemura, Y. (1988), in Chitin and Chitosan—Sources, Chemistry, Biochemistry, Physical Properties and Applications, Skjak-Braek, G., Anthonsen, T., and Sandford, P., eds., Elsevier Applied Science, London, pp. 585–588.Google Scholar
  34. 34.
    Ma, J. and Cooney, C. L. (2004), Biotech. Prog. 20, 269–276.CrossRefGoogle Scholar
  35. 35.
    Barker, A. F., Siemsen, F., Pasley, D., D'Silva, R., and Buist, A. S. (1994), Chest 105, 1406–1410.PubMedGoogle Scholar
  36. 36.
    deSerres, F. J. (2002), Chest 122, 1818–1829.CrossRefGoogle Scholar
  37. 37.
    Lyddiatt, A. (2002), Curr. Opin. Biotechnol. 13, 95–103.PubMedCrossRefGoogle Scholar
  38. 38.
    Persson, J., Andersen, D. C., and Lester, P. M. (2005), Biotechnol. Bioeng. 90, 442–451.PubMedCrossRefGoogle Scholar
  39. 39.
    Willoughby, N., Martin, P., and Tichener-Hooker, N. (2004), Biotechnol. Bioeng. 87, 641–647.PubMedCrossRefGoogle Scholar
  40. 40.
    Ling, T. C., Lyddiatt, A., Carmichael, I., Purdom, G., Hathi, P., and Levison, P. R. (2003), J. Chromatogr. A 989, 109–118.PubMedCrossRefGoogle Scholar
  41. 41.
    Fahrner, R. L., Blank, G. S., and Zapata, G. A. (1999), J. Biotechnol. 75, 273–280.PubMedCrossRefGoogle Scholar
  42. 42.
    Anspach, F. B., Curbelo, D., Hartmann, R., Garke, G., and Deckwer, W.-D. (1999), J. Chromatogr. A 865, 129–144.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2005

Authors and Affiliations

  • Shamik S. Sharma
    • 1
  • Shaorong Chong
    • 2
  • Sarah W. Harcum
    • 3
  1. 1.Department of Chemical EngineeringClemson UniversityClemson
  2. 2.New England BiolabsBeverly
  3. 3.Department of Bioengineering, 401 Rhodes Engineering Research CenterClemson UniversityClemson

Personalised recommendations