Applied Biochemistry and Biotechnology

, Volume 125, Issue 1, pp 41–52 | Cite as

Application of recombinant phage display antibody system in study of Codakia orbicularis gill proteins

  • Jean-Philippe Gourdine
  • Pamela Greenwell
  • Emilie Smith-Ravin
Original Articles


We used the recombinant phage display antibody system (RPAS) to obtain chimeric single-chain fragment variable (ScFv) antibodies to gill proteins of the white clam Codakia orbicularis (Linné, 1758). After three rounds of selection on immunotubes loaded with total gill protein extract, recombinant phages exhibiting antibodies to gill proteins were isolated and tested by enzyme-linked immunosorbent assay (ELISA). Clones exhibiting a high affinity for the mollusk proteins were selected for production of soluble ScFv antibodies, which were purified for subsequent analysis. ScFv antibodies exhibited a reaction specific for a protein whose molecular mass was about 15,000 Daltons and that was detected by the antigen capture technique followed by sodium dodecyl sulfate polyacrylamide gel electrophoresis and Western blotting.

Index Entries

Antigen capture Codakia orbicularis gill proteins phage antibodies single-chain fragment variable 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kohler, G. and Milstein, C. (1975), Nature 256, 495–497.PubMedCrossRefADSGoogle Scholar
  2. 2.
    McCafferty, J., Griffiths, A. D., Winter, G., and Chiswell, D. J. (1990), Nature, 38, 552–554.CrossRefADSGoogle Scholar
  3. 3.
    Barbas, C. F. 3rd, Collet, T. A., Amberg, W., et al. (1993), J. Mol. Biol. 230, 812–823.PubMedCrossRefGoogle Scholar
  4. 4.
    Gram, H., Marconi, L. A., Barbas, C. F. 3rd, Collet, T. A., Lerner, R. A., and Kang, A. S. (1992), Proc. Natl. Acad. Sci. USA 89, 3576–3580.PubMedCrossRefADSGoogle Scholar
  5. 5.
    Vaughan, T. J., Williams, A. J., Pritchard, K., Osbourn, J. K., Pope, A. R., Earnshaw, J. C., McCafferty, J., Hodits, R. A., Wilton, J., and Johnson, K. S. (1996), Nat. Biotechnol. 14, 309–314.PubMedCrossRefGoogle Scholar
  6. 6.
    Griffiths, A. D., Williams, S. C., Hartley, O., et al. (1994), EMBO J. 13, 3245–3260.PubMedGoogle Scholar
  7. 7.
    Winter, G. (1998), FEBS Lett., 430, 92–94.PubMedCrossRefGoogle Scholar
  8. 8.
    Griffiths, A. D. and Duncan, A. R. (1998), Curr. Opin. Biotechnol. 9, 102–108.PubMedCrossRefGoogle Scholar
  9. 9.
    Shan, D., Press, O. W., Tsu, T. T., Hayden, M. S., and Ledbetter, J. A. (1999), J. Immunol. 162, 6589–6595.PubMedGoogle Scholar
  10. 10.
    Kontermann, R. and Dubel, S. (2001), Antibody Engineering, Springer Lab Manual, Heidelberg.Google Scholar
  11. 11.
    Johns, M., Georges, A. J. T., and Ritter, M. A. (2000), J. Immunol. Methods 239, 137–151.PubMedCrossRefGoogle Scholar
  12. 12.
    Foy, B. D., Killeen, G. F., Frohn, R. H., Impoinvil, D., Williams, A., and Beier, J. C. (2002), J. Immunol. Methods 261, 73–83.PubMedCrossRefGoogle Scholar
  13. 13.
    Nissim, A., Hoogenboom, H. R., Tomlinson, I. M., Flynn, G., Midgley, C., Lane, D., and Winter, G. (1994), EMBO J. 13 692–698.PubMedGoogle Scholar
  14. 14.
    Mousli, M., Devaux, C., Rochat, H., Goyffon, M., and Billiald, P. (1999), FEBS Lett. 442, 183–188.PubMedCrossRefGoogle Scholar
  15. 15.
    Chae, J.-S., Choi, J.-K., Lim, H.-T., and Cha, S.-H. (2000), Mol. Cell 11, 7–12.Google Scholar
  16. 16.
    Herschhorn, A., Admon, A., and Hizi, A. (2003), Biochim. Biophys. Acta 1648, 154–163.PubMedGoogle Scholar
  17. 17.
    Berg, C. J. and Alatalo, P. (1984), Aquaculture 39, 165–179.CrossRefGoogle Scholar
  18. 18.
    Gros, O., Darasse, A., Frenkiel, L., and Mouëza, M. (1996), Appl. Environ. Microbiol. 62, 2324–2330.PubMedGoogle Scholar
  19. 19.
    Frenkiel, L. and Mouëza, M. (1995), Zoomorphology 115, 57–61.CrossRefGoogle Scholar
  20. 20.
    Gourdine, J.-P. and Smith-Ravin, E. J. (2002), Prep. Biochem. Biotechnol. 32, 341–353.PubMedCrossRefGoogle Scholar
  21. 21.
    Hombach, A., Pohl, C., Heuser, C., Sircar, R., Diehl, V., and Abken, H. (1998), J. Immunol. Methods 218, 53–61.PubMedCrossRefGoogle Scholar
  22. 22.
    Harper, K., Toth, R. L., Mayo, M. A., and Torrance, L. (1999), J. Virol. Methods 81, 159–168.PubMedCrossRefGoogle Scholar
  23. 23.
    Zavala, A. G., Lancaster, T., Groopman, J. D., Strickland, P. T., and Chandrasegaran, S. (2000), Nucleic Acids Res. 28, E24.PubMedCrossRefGoogle Scholar
  24. 24.
    McCafferty, J. and Johnson, K. S. (1996), in Phage Display of Peptides and Proteins: A Laboratory Manual, Kay, B. K., Winter, J., and McAfferty, J., eds., Academic, San Diego, pp. 227–276.Google Scholar
  25. 25.
    Muller, K. M., Arndt, K. M., Strittmatter, W., and Pluckthun, A. (1998), FEBS Lett. 442, 259–264.CrossRefGoogle Scholar

Copyright information

© Humana Press Inc 2005

Authors and Affiliations

  • Jean-Philippe Gourdine
    • 1
  • Pamela Greenwell
    • 2
  • Emilie Smith-Ravin
    • 1
  1. 1.Département de Biologie, Equipe DYNECAR EA 926, UFR Sciences Exactes et NaturellesUniversité des Antilles et de la GuyanePointe-à-PitreGuadeloupe
  2. 2.Department of Biomedical SciencesUniversity of WestminsterLondonUK

Personalised recommendations