Advertisement

Applied Biochemistry and Biotechnology

, Volume 124, Issue 1–3, pp 901–910 | Cite as

Enzyme recovery and recycling following hydrolysis of ammonia fiber explosion-treated corn stover

  • Bernie Steele
  • Srini Raj
  • John Nghiem
  • Mark Stowers
Article

Abstract

Both cellulase and cellobiase can be effectively recovered from hydrolyzed biomass using an ultrafiltration recovery method. Recovery of cellulase ranged from 60 to 66.6% and for cellobiase from 76.4 to 88%. Economic analysis shows that cost savings gained by enzyme recycling are sensitive to enzyme pricing and loading. At the demonstrated recovery of 60% and current loading of 15 Filter paper units of cellulase/g of glucan, enzyme recycling is expected to generate a cost savings of approx 15%. If recovery efficiency can be improved to 70%, the savings will increase to >25%, and at 90% recovery the savings will be 50%.

Index Entries

Enzyme recycle biomass ammonia fiber explosion ethanol corn stover 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    National Bioenergy Center Sugar Platform Integration Project. Quarterly Update. January/March 2004, #2, http://www.eere.energy.gov/biomass/pdfs/35605.pdf.Google Scholar
  2. 2.
    U.S. Department of Energy, Energy Efficiency and Renewable Energy. Cellulase Cost-Reduction Contracts. Last updated: May 23, 2004, http://www.eere.energy.gov/biomass/cellulase_cost.htmlGoogle Scholar
  3. 3.
    Dale, B. E. and Weaver, J. K. (2000), US patent 6,106,888.Google Scholar
  4. 4.
    Dale, B. E. (1986), US patent 4,600,590, pp. 1–7.Google Scholar
  5. 5.
    Wilke, C. R., Yang, R. D. and Stockar, U. V. (1976), Biotechnol. Bioeng. 19, 155.Google Scholar
  6. 6.
    Linko, M. (1977), in Advances in Biochemical Engineering, vol. 5, Ghose, T. K., Fiechter, A., and Blakebrough, N., eds., Springer-Verlag, New York, pp. 25–48.Google Scholar
  7. 7.
    Gregg, D. J. and Saddler, J.N. (1996), Biotechnol. Bioeng. 51, 375–383.CrossRefGoogle Scholar
  8. 8.
    Moniruzzaman, M., Dale, B. E., Hespell, R. B., and Bothast, R. J. (1997), Appl. Biochem. Biotechnol. 67, 113–126.CrossRefGoogle Scholar
  9. 9.
    Alkasrawi, M., T. Eriksson, J. Borjesson, A. Wingren, M Galbe, F. Tjerneld, and G. Zacchi. (2003), Enzyme Microb. Technol. 33, 71–78.CrossRefGoogle Scholar
  10. 10.
    Eriksson, T., J. Karlsson, and F. Tjerneld. (2002), Enzyme Microb. Technol. 31, 353–364.CrossRefGoogle Scholar
  11. 11.
    Zaldivar, M., J.C. Velasquez, I. Contreras, and L.M. Perez. (2001), Electronic J. Biotechnol. (online), December 15, 2001, vol. 4, no. 3, http://www.ejb.org/content/vol4/issue3/full/7.Google Scholar
  12. 12.
    Konig J., R. Grasser, H. Pilor, and K. Vogel. (2002), Anal. Bioanal. Chem. 374, 80–87.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2005

Authors and Affiliations

  • Bernie Steele
    • 1
  • Srini Raj
    • 1
  • John Nghiem
    • 1
  • Mark Stowers
    • 1
  1. 1.MBI InternationalLansing

Personalised recommendations