Skip to main content
Log in

Simultaneous biocatalyst production and baeyer-villiger oxidation for bioonversion of cyclohexanone by recombinant Escherichia coli expressing cyclohexanone monooxygenase

  • Session 5 Biobased Industrial Chemicals
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Cyclohexanone monooxygenase (CHMO) catalyzing Baeyer-Villiger oxidation converts cyclic ketones into optically pure lactones, which have been used as building blocks in organic synthesis. A recombinant Escherichia coli BL21(DE3)/pMM4 expressing CHMO originated from Acinetobacter sp. NCIB 9871 was used to produce ε-caprolactone through a simultaneous biocatalyst production and Baeyer-Villiger oxidation (SPO) process. Afed-batch process was designed to obtain high cell density for improvin production of ε-caprolactone. The fed-batch SPO process have the best results, 10.2 g/L of ε-caprolactone and 0.34 g/(L·h) of productivity, corresponding to a 10.5- and 3.4-fold enhancement compared with those of the batch SPO, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Renz, M. and Meunier, B. (1999), Eur. J. Org. Chem. 4, 737–750.

    Article  Google Scholar 

  2. Kyte, B. G., Rouviere, P., Cheng, Q., and Stewart, J. D. (2004), J. Org. Chem. 69, 12–17.

    Article  PubMed  CAS  Google Scholar 

  3. Roberts, S. M. and Wan, P. W. H. (1998), J. Mol. Catal. B: Enzymat. 4, 111–136.

    Article  CAS  Google Scholar 

  4. Strukul, G. (1998), Angew. Chem. Int. Ed. Engl. 37, 1198–1209.

    Article  Google Scholar 

  5. Kelly, D. R., Wan, P. W. H., and Tang, J. (1998), in Biotechnology, vol. 8, Rehm, H. J., Reed, G., Puhler, A., and Stadler, P., eds., Wiley-VCH, Weinheim, Germany pp. 535–587.

    Google Scholar 

  6. Trudgill, P. W. (1990). Methods Enzymol. 37, 70–77.

    Article  Google Scholar 

  7. Willetts, A. (1997), TIBTECH 15, 55–62.

    CAS  Google Scholar 

  8. Vogel, M. and Schwarz-Linek, U. (1999), in Bioorganic Chemistry, Diederichsen, U., Lindhorst, T. K., Westermann, B., and Wessjohann, L. A., eds., Wiley-VCH, Weinheim, Germany, pp. 102–110.

    Google Scholar 

  9. Simpson, H. D., Alphand, V., and Furstoss, R. (2001), J. Mol. Catal. B: Enzymat. 16, 101–108.

    Article  CAS  Google Scholar 

  10. Doig, S. D., O'Sullivan, L. M., Patel, S., Ward, J. M., and Woodley, J. M. (2001), Enzyme Microb. Technol. 28, 265–274.

    Article  PubMed  CAS  Google Scholar 

  11. Doig, S. D., Simpson, H., Alphand, V., Furstoss, R., and Woodley, J. M. (2003), Enzyme Microb. Technol. 32, 347–355.

    Article  CAS  Google Scholar 

  12. Doig, S. D., Avenell, P. J., Bird, P. A., Gallati, P., Lander, K. S., Lye, G. J., Wohlgemuth, R., and Woodley, J. M. (2002), Biotechnol. Prog. 18, 1039–1046.

    Article  PubMed  CAS  Google Scholar 

  13. Mihovilovic, M. D., Muller, B., Kayser, M. M., Stewart, J. D., Frohlich, J., Stanetty, P., and Spreitzer, H. (2001), J. Mol. Catal. B: Enzymat. 11, 349–353.

    Article  CAS  Google Scholar 

  14. Martinez, C. A. (2000), PhD thesis, University of Florida, Gainesville.

  15. Walton, A. Z. and Stewart, J. D. (2002), Biotechnol. Prog. 18, 262–268.

    Article  PubMed  CAS  Google Scholar 

  16. Lee, D. H., Kim, M. D., Lee, W. H., Kweon, D. H., and Seo, J. H. (2004), Appl. Microbiol. Biotechnol. 63, 549–552.

    Article  PubMed  CAS  Google Scholar 

  17. Chen, G., Kayser, M. M., Mihovilovic, M. D., Mrstik, M. E., Martinez, C. A., and Stewart, J. D. (1999), N. J. Chem. 23, 827–832.

    Article  CAS  Google Scholar 

  18. Kim, M. D., Lee, W. J., Park, K. H., Rhee, K. H., and Seo, J. H. (2002), J. Microbiol. Biotechnol. 12(2) 273–278.

    CAS  Google Scholar 

  19. Choi, H. I., Lee, S. Y., Shin, K. S., Lee, W. G., Park, S. J., Chang, H. N., and Chang, Y. K. (2002), Biotechnol. Bioprocess Eng. 7, 371–374.

    Article  CAS  Google Scholar 

  20. Laemmli, U. K. (1970), Nature 27, 680–685.

    Article  ADS  Google Scholar 

  21. Ramos, J. L., Duque, E., Gallegos, M. t., Godoy, R., Ramos-Gonzalez, I. R., Rojas, A., Teran, W., and Segura, A. (2002), Annu. Rev. Microbiol. 56, 743–768.

    Article  PubMed  CAS  Google Scholar 

  22. White, D. G., Goldmas, J. D., Demple, B., and Levy, S. B. (1997), J. Bacteriol. 179, 6122–6126.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin-Ho Seo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, WH., Park, YC., Lee, DH. et al. Simultaneous biocatalyst production and baeyer-villiger oxidation for bioonversion of cyclohexanone by recombinant Escherichia coli expressing cyclohexanone monooxygenase. Appl Biochem Biotechnol 123, 827–836 (2005). https://doi.org/10.1385/ABAB:123:1-3:0827

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/ABAB:123:1-3:0827

Index Entries

Navigation