Applied Biochemistry and Biotechnology

, Volume 122, Issue 1–3, pp 707–719 | Cite as

The two-phase water/silicon oil bioreactor prospects in off-gas treatment

  • Jean-Marc Aldric
  • Jacqueline Destain
  • Philippe Thonart
Article

Abstract

Research was carried out to develop a biphasic biologic reactor able to clean the gas effluents polluted by volatile organic compounds. Initially, Rhodococcus erythropolis T 902.1 was selected on the basis of its capacity to degrade isopropylbenzene (IPB). The effect of gas flow and IPB concentration on the biodegadation of IPB was evaluated. The results show that the use of silicon oil allows large quantities of IPB to be absorbed within the medium of biologic abatement. On the other hand, the biodegradation rate was directly correlated to the inlet flow of IPB. Thus, the reactor presents interesting opportunities for the biologic treatment of gas effluents.

Index Entries

Two-phase bioreactor silicon oil volatile organic compounds off-gas treatment 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Yeom, S. H. and Daugulis, A. J. (2001), Biotechnol. Bioeng. 72, 156–165.PubMedCrossRefGoogle Scholar
  2. 2.
    Collins, L. D. and Daugulis, A. J. (1999), Biotechnol. Prog. 15, 74–80.PubMedCrossRefGoogle Scholar
  3. 3.
    Collins, L. D. and Daugulis, A. J. (1999), Appl. Microbiol. Biotechnol. 52, 360–365.PubMedCrossRefGoogle Scholar
  4. 4.
    Van Ede, C. J., Van Houten, R., and Beenackers. (1995), Chem. Eng. Sci. 50(18), 2911–2922.CrossRefGoogle Scholar
  5. 5.
    Teresa, M., Beverloo, W. A., Tramper, J., and Beeftink, H. (1997), Enzyme Microb. Technol. 21, 578–588.CrossRefGoogle Scholar
  6. 6.
    Nielsen, D., Daugulis, A., and McLellan, P. J. (2003), A novel method of simulation oxygen mass transfer in two-phase partitioning bioreactors. Biotechnol. Bioeng. 83(6), 735–742. Published online June 23, 2003, Wiley Interscience (www.interscience.wiley.com).PubMedCrossRefGoogle Scholar
  7. 7.
    Dumont, E. and Delmas, H. (2003), Chem. Eng. Processing 42(6), 419–438.CrossRefGoogle Scholar
  8. 8.
    Rols, J. L. and Goma, G. (1991), Biotechnol. Lett. 13, 7–12.CrossRefGoogle Scholar
  9. 9.
    Budwill, K. and Coleman, R. N. (1997), Med. Fac. Univ. Gent. 62/4b, 1521–1528.Google Scholar
  10. 10.
    Aldric, J. M. (2001), Contribution à la mise au point d’un réacteur biphasique destiné à la dégradation des composés organiques volatiles par voie biologique. Mémoire de fin d’études présenté en vue de l’obtention du diplôme d’études approfondies en sciences agronomiques et ingénierie biologique. Faculté Universitaire des Sciences Agronomiques de Gembloux, Belgiume.Google Scholar
  11. 11.
    Weekers, F., Jaques, P., Sprindael, D., Mergeay, M., Diels, L. and Thonart, P. Appl. Biochem. Biotechnol. 77–79, 251–266, 1999.CrossRefGoogle Scholar
  12. 12.
    Weekers, F., Rodriguez, C., Jaques, P., Mergeay, M., and Thonart, P. Appl. Biochem. Biotechnol. 91–93, 219–232, 2001.PubMedCrossRefGoogle Scholar
  13. 13.
    Doehlert, D. H. and Klee, V. L. (1992), Discrete Mathematics 2, 309–334.CrossRefMathSciNetGoogle Scholar
  14. 14.
    Solstys, N. Technique de l’ingénieur, traité Génie des procédés J 3, 928.Google Scholar

Copyright information

© Humana Press Inc. 2005

Authors and Affiliations

  • Jean-Marc Aldric
    • 1
  • Jacqueline Destain
    • 1
  • Philippe Thonart
    • 1
    • 2
  1. 1.Unité de Bioindustries, Centre Wallon de Biologie IndustrielleFaculté Universitaire des Sciences Agronomiques de GemblouxGemblouxBelgium
  2. 2.Centre Wallon de Biologie Industrielle, Service de Technologie MicrobienneUniversité de LiègeLiègeBelgium

Personalised recommendations