Skip to main content
Log in

Estimation of bioreactor efficiency through structured hydrodynamic modeling case study of a Pichia pastoris fed-batch process

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

In this article, two theories are unified to investigate the effect of hydrodynamics on a specific bioprocess: the network-of-zones (NOZ) hydrodynamic structured modeling approach (developed by several researchers but applied to only a few bioprocesses) and the effectiveness factor η approach. Two process scales were investigated (20 and 500 L), and for each, hydrodynamics were quantified using an NOZ validated by homogeneity time measurements. Several impeller combinations inducing quite different hydrodynamics were tested at the 20-L scale. After this step, effectiveness factors were determined for each fermentation run. To achieve this, a perfectly mixed microbial kinetic model was evaluated by using simple Monod kinetics with a fed-batch mass balance. This methodology permitted determination of the effectiveness factor with more accuracy because of the relation with the perfect case deduced from the Monod kinetics. It appeared that for the small scale, η decreased until reaching a value of approx 0.7 (30% from the ideal case) for the three impeller systems investigated. However, stirring systems that include hydrofoils seemed to maintain higher effectiveness factors during the course of the fermentation. This effect can be attributed to oxygen transfer performance or to homogenization efficiency exhibited by the hydrofoils. To distinguish the oxygen transfer from the homogenization component of the effectiveness factor, these phenomena were analyzed separately. After determining the evolution of ηO 2 linked to oxygen transfer for each of the fermentation runs, the NOZ model was employed to quantify substrate gradient appearance. After this step, another effectiveness factor, ηmix, related to mixing was defined. Consequently, it is possible to distinguish the relative importance of the mixing effect and oxygen transfer on a given bioprocess. The results have highlighted an important scale effect on the bioprocess that can be analyzed using the NOZ model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

d :

impeller diameter (m)

ex :

exponential factor of substrate feed pump

F :

fed-batch pump feed rate (m3/s)

F o :

initial fed-batch feed rate (m3/s)

F max :

maximum feed rate (m3/s)

i :

degree of inhomogeneity

K s :

affinity constant (g/L)

n :

number of circulation loops of NOZ model

N :

impeller rotational speed (s−1)

N qc :

circulation without (dimensionless)

η:

circular, number dimensions

q c :

circulating flow rate of NOZ model (q c =Q c /n) (m3/s)

q e :

turbulence backmixing flow rate of NOZ model (m3/s)

Q c :

circulating flow rate (m3/s)

Re :

Reynolds number (dimensionless)

s :

mean absolute deviation

S :

substrate concentration (g/L)

S a :

substrate concentration in the feed (g/L)

X :

biomass concentration (g/L)

Y xs :

substrate-to-biomass conversion yield

η:

effectiveness factor (%)

ηmix :

homogenization component of effectiveness factor (%)

ηO 2 :

oxygen transfer component of effectiveness factor (%)

μ:

viscosity (Pa · s)

μ x :

growth rate (h−1)

μ xmax :

maximum growth rate (h−1)

References

  1. Diaz, M., Garcia, A. I., and Garcia, L. A. (1996), Biotechnol. Bioeng. 51, 131–140.

    Article  Google Scholar 

  2. Mayr, B., Horvat, P., and Moser, A. (1992), Bioprocess Eng. 8, 137–143.

    Article  CAS  Google Scholar 

  3. Bylund, F., Collet, E., Enfors, S. O., and Larsson, G. (1998), Bioprocess Eng. 18, 171–180.

    Article  CAS  Google Scholar 

  4. Enfors, S. O., Jahic, M., and Rozkov, A. (2001), J. Biotechnol. 85, 175–185.

    Article  PubMed  CAS  Google Scholar 

  5. Lin, H. Y. and Neubauer P. (2000), J. Biotechnol. 79, 27–37.

    Article  PubMed  CAS  Google Scholar 

  6. Neubauer, P., Häggström, L., and Enfors, S. O. (1995), Biotechnol. Bioeng. 47, 139–146.

    Article  CAS  Google Scholar 

  7. Cui, Y. Q., van der Lans, R. G. J. M., Noorman, H. J., and Luyben, K. (1996), Trans. Ichem. E 74, 261–271.

    CAS  Google Scholar 

  8. Machon, V. and Jahoda, M. (2000), Chem. Eng. Technol. 23, 869–876.

    Article  CAS  Google Scholar 

  9. Vasconcelos, J. M. T., Alves, S. S., and Barata, J. M. (1995), Chem. Eng. Sci. 50(14), 2343–2354.

    Article  CAS  Google Scholar 

  10. Vrabel, P., van der Lans, R. G. J. M., Luyben, K. C. A. M., Boon, L., and Nienow A. W. (2000), Chem. Eng. Sci. 55, 5881–5896.

    Article  CAS  Google Scholar 

  11. Mann, R., Williams, R. A., Dyakowski, T., Dickin, F. J., and Edwards, R. B. (1997), Chem. Eng. Sci. 52(13), 2073–2085.

    Article  CAS  Google Scholar 

  12. Vlaev, D., Mann, R., Lossev, V., Vlaev, S. D., Zahradnik, J., and Seichter P. (2000), Trans. Ichem. E 78, 354–362.

    Article  CAS  Google Scholar 

  13. Zahradnik, J., Mann, R., Fialova, M., Vlaev, D., Vlaev, S. D., Lossev, V., and Seichter, P. (2001), Chem. Eng. Sci. 56, 485–492.

    Article  CAS  Google Scholar 

  14. Norwood, K. W. and Metzner, A. B. (1960), AIChE J. 6(3), 432–437.

    Article  CAS  Google Scholar 

  15. Bouaiffi, M. and Roustan, M. (2001), Chem. Eng. Process. 40, 87–95.

    Article  Google Scholar 

  16. Dunn, I. J., Heinzle, E., Ingham, J., and Prenosil, J. E. (2003), in Biological Reaction Engineering, Wiley-VCH Verlag, Weinheim, Germony pp. 77–116.

    Google Scholar 

  17. Oosterhuis, N. M. G. and Kossen, N. W. F. (1983), Biotechnol. Bioeng. 26, 546–550.

    Article  Google Scholar 

  18. Nienow, A. W. (1997), Chem. Eng. Sci. 52(15), 2557–2565.

    Article  CAS  Google Scholar 

  19. Pena, C., Galindo, E., and Diaz, M. (2002), J. Biotechnol. 95, 1–12.

    Article  PubMed  CAS  Google Scholar 

  20. Vrabel, P., van der Lans, R. G. J. M., van der Schot, F. N., Luyben, K. C. A. M., Xu, B., and Enfors, S.-O. (2001), Chem. Eng. J. 84, 463–474.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank Delvigne.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Delvigne, F., El Mejdoub, T., Destain, J. et al. Estimation of bioreactor efficiency through structured hydrodynamic modeling case study of a Pichia pastoris fed-batch process. Appl Biochem Biotechnol 122, 653–671 (2005). https://doi.org/10.1385/ABAB:122:1-3:0653

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/ABAB:122:1-3:0653

Index Entries

Navigation