Advertisement

Applied Biochemistry and Biotechnology

, Volume 122, Issue 1–3, pp 619–637 | Cite as

Production of nisin by Lactococcus lactis in media with skimmed milk

  • Thereza Christina Vessoni Penna
  • Angela Faustino Jozala
  • Letícia Célia De Lencastre Novaes
  • Adalberto PessoaJr.
  • Olivia Cholewa
Article

Abstract

Nisin is a bacteriocin that inhibits the germination and growth of Gram-positive bacteria. With nisin expression related to growth conditions of Lactococcus lactis subsp. lactis, the effects of growth parameters, media components, and incubation time were studied to optimize expression. L. lactis ATCC 11454 was grown (100 rpm at 30°C for 36 h) in both M17 and MRS standard broth media (pH 6.0–7.0) supplemented with sucrose (1.0–12.5 g/L), potassium phosphate (0.13 g/L), asparagine (0.5 g/L), and sucrose (0.24 g/L), and diluted 1:1 with liquid nonfat milk. Liquid nonfat milk, undiluted, was also used as another medium (9% total solids, pH 6.5). Nisin production was assayed by agar diffusion using Lactobacillus sake ATCC 15521 (30°C for 24 h) as the sensitive test organism. The titers of nisin expressed and released in culture media were quantified and expressed in arbitrary units (AU/L of medium) and converted into known concentrations of “standard nisin” (Nisaplin®, g/L). The detection of nisin activity was <0.01 AU/L in M17 and MRS broths, and 7.5 AU/L in M17 with 0.14% sucrose or 0.13% other supplements, and the activity increased to 142.5 AU/L in M17 diluted with liquid nonfat milk (1:1). The 25% milk added to either 25% M17 or 25% MRS provided the highest levels of nisin assayed.

Index Entries

Nisin Lactococcus lactis growth conditions skimmed milk Lactobacillus sake 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Jung, G. (1991), Angew. Chem. Int. Ed. Engl. 30, 1051–1192.CrossRefGoogle Scholar
  2. 2.
    Mattick, A. T. R. and Hirsh, A. (1944), Lancet 2, 3–7.Google Scholar
  3. 3.
    Buchman, G. W., Banerjee, S., and Hansen, J. N. (1988), J. BioL Chem. 263, 16,260–16,266.Google Scholar
  4. 4.
    De Vuyst and Vandamme, E. J. (1992), J. Gen. Microbiol. 138, 571–578.PubMedGoogle Scholar
  5. 5.
    Ray, B. (1992), in Food Biopreservatives of Microbial Origin, Ray, B. and Daeschel, M. A., eds., CRC Press, Boca Raton, Fl, pp. 1–23.Google Scholar
  6. 6.
    Vessoni Penna, T. C, Moraes, D. A., and Fajardo, D. N. (2002), J. Food Protect. 65, 419–422.Google Scholar
  7. 7.
    Turner, S. R., Love, R. M. and Lyons, K. M. (2004), Int. Endocrinol. J. 37, 664–671.Google Scholar
  8. 8.
    Sears, P. M., Smith, B. S. and Stewart, W. K. (1992), J. Dairy Sci. 75, 3185–3190.PubMedCrossRefGoogle Scholar
  9. 9.
    Dubois, A. (1995), EID Dig. Dis. Div. 1(3), 79–88.Google Scholar
  10. 10.
    Sakamoto, I., Igarashi, M., and Kimura, K. (2001), J. Antimicrob. Chemother. 47, 709–710.PubMedCrossRefGoogle Scholar
  11. 11.
    Stevens, K. A., Sheldon, B. W., Klapes, N. A., and Klaenhammer, T. R. (1991), J. Food Protect. 55,763–7766.Google Scholar
  12. 12.
    De Vuyst, L. and Vandamme, E. J. (1994), in Bacteriocins of Lactic Acid Bacteria, De Vuyst, L. and Vandamme, E. J., eds., Chapman & Hall, Glasgow, pp. 1–12.Google Scholar
  13. 13.
    Thomas, L. V. and Delves-Broughton, J. (2001), Res. Adv. Food Sci. 2, 11–22.Google Scholar
  14. 14.
    Thomas, L. V., Ingram, R. E., Bevis, H. E., Davies, A., Milne, C. F., and Delves-Broughton, J. (2002), J. Food. Protect. 65 (10), 1580–1585.Google Scholar
  15. 15.
    Wirjantoro, T.I. Lewis, M. J., Grandison, A. S., Williams, G. C., and Delves-Broughton, J. (2001), J. Food Protect. 64(2), 213–219.Google Scholar
  16. 16.
    Wandling, L. R., Sheldon, B. W., and Foegeding, P. M. (1999), J. Food. Protect. 65(5), 492–498.Google Scholar
  17. 17.
    Biswas, S. R., Ray, P., Johnson, M. C., and Ray, B. (1991), J. Appl. Environ. Microbiol. 57, 1265–1267.Google Scholar
  18. 18.
    Daba, H., Lacroix, C., Huang, J., and Simard, R. E. (1993), Appl. Microbiol. Biotechnol 39, 166–173.CrossRefGoogle Scholar
  19. 19.
    Parente, E., Ricciardi, A., and Addario, G. (1994), Appl. Microbiol. Biotechnol. 41, 388–394.Google Scholar
  20. 20.
    Parente, E. and Ricciardi, A. (1994), Lett. Appl. Microbiol. 19, 12–15.PubMedGoogle Scholar
  21. 21.
    Yang, R. and Ray, B. (1994), Food Microbiol. 11, 281–291.CrossRefGoogle Scholar
  22. 22.
    ten Brink, B., Minekus, M., van der Vossen, J. M, Leer, R. J., and Huis in’t Veld, J. H. (1994), J. Appl. Bacteriol. 77, 140–148.PubMedGoogle Scholar
  23. 23.
    Cheigh, C.-I., Choi, H.-J., Park, H., Kim, S.-B., Kook, M.-C Kim, T.-S., Hwang, J. K., and Pyun, Y. R. (2002), J. Biotechnol, 95, 225–235.PubMedCrossRefGoogle Scholar
  24. 24.
    Kim, W. S., Hall, R. J., and Dunn, N. W. (1997), Appl. Microbiol BiotechnoL 48, 449–453.PubMedCrossRefGoogle Scholar
  25. 25.
    Chandrapatti, S. and O’Sullivan, D. J. (1998), J. Biotechnol. 63, 229–233.CrossRefGoogle Scholar
  26. 26.
    MacGroary, J. A. and Reid, G. (1988), Can. J. Microbiol. 39, 974–978.CrossRefGoogle Scholar
  27. 27.
    Toba, T., Samant, S. K., Toshiota, E and Itoh, T. (1991), Lett. Appl. Microbiol. 13, 281–286.Google Scholar
  28. 28.
    Vessoni Penna, T.C. and Moraes, D. A. (2002), Appl. Biochem. Biotechnol. 98–100, 775–789.CrossRefGoogle Scholar
  29. 29.
    Kim, W. S., Hall, R. J., and Dunn, N. W. (1998), Appl Microbiol Biotechnol. 50, 429–433.CrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2005

Authors and Affiliations

  • Thereza Christina Vessoni Penna
    • 1
  • Angela Faustino Jozala
    • 1
  • Letícia Célia De Lencastre Novaes
    • 1
  • Adalberto PessoaJr.
    • 1
  • Olivia Cholewa
    • 2
  1. 1.Department of Biochemical and Pharmaceutical Technology, School of Pharmaceutical ScienceUniversity of São PauloSão Paulo, SPBrazil
  2. 2.Molecular ProbesEugene

Personalised recommendations