Advertisement

Applied Biochemistry and Biotechnology

, Volume 122, Issue 1–3, pp 605–618 | Cite as

Recovery of organic acids from fermentation broths

  • Tim EggemanEmail author
  • Dan Verser
Article

Abstract

Rising concerns over the use of fossil resources have generated renewed interest in the production of commodity chemicals via fermentation. Organic acids are a particularly attractive target because their functionality enables downstream catalytic upgrading to a variety of compounds. In this article, we survey how common technical issues are addressed in the recovery schemes for several organic acids. We present results for the recovery of acetate using a new method based on amine complexation. Our reactive separation scheme produces a high-purity product, is energy efficient, and avoids the coproduction of a waste salt coproduct, all prerequisites for a large-scale production process.

Index Entries

Organic acid recovery acetic acid recovery indirect ethanol process gypsum citric acid 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ardagh, E., Barbour, A., McClellan, G., and McBride, E. (1924), Ind. Eng. Chem. 16, 1133–1139.CrossRefGoogle Scholar
  2. 2.
    Witzeman, J. and Agreda, V. (1993), in Acetic Acid and Its Derivatives, Agreda, V. and Zoeller, J., eds., Marcel Dekker, New York, pp. 257–284.Google Scholar
  3. 3.
    Colley, S. W., Fawcett, C. R., Sharif, M., Tuck, M. W. M., Watson, D. J., Wood, M. A. (2000), WO 00/20373.Google Scholar
  4. 4.
    Bradley, M. W., Harris, N., and Turner, K. (1982), WO 82/03854.Google Scholar
  5. 5.
    Winter, O. and Eng, M. (1976), Hydrocarbon Process. 55(11), 125–133.Google Scholar
  6. 6.
    Filachione, E. and Fisher, C. (1946), Ind. Eng. Chem. 38(2), 228–232.CrossRefGoogle Scholar
  7. 7.
    Benninga, H. (1990), A History of Lactic Acid Making: A Chapter in the History of Biotechnology, Kluwer Academic, London.Google Scholar
  8. 8.
    Cockrem, M. and Johnson, P. (1993), US patent 5210296.Google Scholar
  9. 9.
    Tung, L. and King, C. (1994), Ind. Eng. Chem. Res. 33, 3217–3229.CrossRefGoogle Scholar
  10. 10.
    Sarhaddar, S., Scheibl, A., Berghofer, E., and Cramer, A. (1997), US patent 5641406.Google Scholar
  11. 11.
    Filachione, E. and Costello, E. (1952), Ind. Eng. Chem. 44(9), 2189–2191.CrossRefGoogle Scholar
  12. 12.
    Cockrem, M. (2000), WO 00/64850.Google Scholar
  13. 13.
    Miao, F. (1997), US patent 5681728.Google Scholar
  14. 14.
    Baniel, A., Eyal, A., Mizrahi, J., Hazan, B., Fisher, R., Kolstad, J., and Stewart, B. (1996), US patent 5510526.Google Scholar
  15. 15.
    Lopez-Garcia, R. (2002), in Kirk-Othmer Encyclopedia of Chemical Technology, Citric Acid, John Wiley, New York.CrossRefGoogle Scholar
  16. 16.
    Verhoff, F. (2002), in Ullmann’s Encyclopedia of Industrial Chemistry, Citric Acid, Wiley-VCH Verlag.Google Scholar
  17. 17.
    Noyes, R. (1969), Citric Acid Production Processes, Noyes Development, Park Ridge.Google Scholar
  18. 18.
    Baniel, A., Blumberg, R., and Hajdu, K. (1981), US patent 4275234.Google Scholar
  19. 19.
    Busche, R. (1983), Biotechnol. Bioeng. Symp. 13, 597–615.Google Scholar
  20. 20.
    Busche, R., Shimshick, E., and Yates, R. (1982), Biotechnol. Bioeng. Symp. 12, 249–262.Google Scholar
  21. 21.
    Partin, L. and Heise, W. (1993), in Acetic Acid and Its Derivatives, Agreda, V. and Zoeller, J., eds., Marcel Dekker, New York, pp. 3–13.Google Scholar
  22. 22.
    Urbas, B. (1983), US patent 4 405 717.Google Scholar
  23. 23.
    Ricker, N., Michaels, J. and King, C. (1979), J. Separ. Process. Technol. 1(1), 36–41.Google Scholar
  24. 24.
    Verser, D. and Eggeman, T. (2003), US patent 6509180Google Scholar
  25. 25.
    Drake, H. (1994), Acetogenesis, Chapman & Hall, New York.Google Scholar

Copyright information

© Humana Press Inc. 2005

Authors and Affiliations

  1. 1.ZeaChem Inc.Lakewood

Personalised recommendations