Applied Biochemistry and Biotechnology

, Volume 122, Issue 1–3, pp 593–603 | Cite as

Increase in removal of polycyclic aromatic hydrocarbons during bioremediation of crude oil-contaminated sandy soil

  • Fernando J. S. Oliveira
  • Francisca P. De FrançaEmail author


A 23 full factorial experimental design was adopted to estimate the effects of three variables on the biodegradation of oil during soil bioremediation: bioaugmentation seeding a mixed culture, addition of fertilizer or mineral media, and correction of initial pH of the soil to 7.0. The tests were carried out in polyvinyl chloride reactors with 5.0 kg of crude oil-contaminated soil at 14 g/kg. After screening the variables, soil bioremediation tests were conduced with varied C:N ratios, yielding an increase in biodegradation of the oil heavy fraction from 24 to 65%, consumption of total n-paraffins, and a remarkable decrease in the concentration of residual polycyclic aromatic hydrocarbons of the soil.

Index Entries

Soil bioremediation crude oil hydrocarbons biodegradation experimental design 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Yuan, S. Y., Wei, S. H., and Chang, B. V. (2000), Chemosphere 41, 1463–1468.PubMedCrossRefGoogle Scholar
  2. 2.
    Mehlman, M. A. (1990), Teratol. Carcinog. Mutagen. 10, 399–408.CrossRefGoogle Scholar
  3. 3.
    Baker, K. H. and Herson, D. S. (1994), in Bioremediation, Baker, K. H. and Herson, D. S., eds., McGraw-Hill, New York, pp. 9–58.Google Scholar
  4. 4.
    Boopathy, R. (2000), Bioresour. Technol. 74, 63–67.CrossRefGoogle Scholar
  5. 5.
    Troquet, J., Larroche, C., and Dussap, C. (2003), Biochem. Eng. J. 13, 103–112.CrossRefGoogle Scholar
  6. 6.
    Sepic, E., Trier, C., and Leskovsek, H. (1996), Analyst 121, 1451–1456.PubMedCrossRefGoogle Scholar
  7. 7.
    Del’Arco, J. P. and de França, F. P. (1999), Int. Biodet. Biodeg. 44, 87–92.CrossRefGoogle Scholar
  8. 8.
    Del’Arco, J. P. and de França, F. P. (2000), Environ. Pollut. 112, 515–519.CrossRefGoogle Scholar
  9. 9.
    Balba, M. T., Al-Awadhi, N., and Al-Daher, R. (1998), J. Microbiol. Methods 32, 155–164.CrossRefGoogle Scholar
  10. 10.
    Oliveira, F. J. S. and de França, F. P. (2004), Soil Rocks 27, 287–292.Google Scholar
  11. 11.
    Box, G. E. P., Hunter, W. G., and Hunter, J. S. (1978), Statistics for Experimenters: An Introduction to Design, Data Analysis and Model Building, John Wiley & Sons, NJ.zbMATHGoogle Scholar
  12. 12.
    Foght, J., Semple, K., Gaughier, C., Westlake, D. W. S., Blenkinsopp, S., Sergy, G., Wang, Z., and Fingas, M. (1999), Environ. Technol. 20, 839–849.CrossRefGoogle Scholar
  13. 13.
    Stout, S. A. and Lundegard, P. D. (1998), Appl. Geochem. 13, 851–859.CrossRefGoogle Scholar
  14. 14.
    Leahy, J. G. and Cowell, R. R. (1990), Microbiol. Rev. 54, 305–315.PubMedGoogle Scholar
  15. 15.
    Alexander, M. (1994), Biodegradation and Bioremediation, Academic, New York.Google Scholar
  16. 16.
    Lin, Q., Menselssohn, I. A., Henry, C. B. Jr., Roberts, P. O., Walsh, M. M., Overton, E. B., and Portier, R. J. (1999), Environ. Technol. 20, 825–837.Google Scholar

Copyright information

© Humana Press Inc. 2005

Authors and Affiliations

  • Fernando J. S. Oliveira
    • 1
  • Francisca P. De França
    • 1
    Email author
  1. 1.Departamento de Engenharia Bioquímica, Escola de Química, Centro de TecnologiaUniversidade Federal de Rio de JaneiroRio de Janeiro, RJBrazil

Personalised recommendations