Advertisement

Applied Biochemistry and Biotechnology

, Volume 122, Issue 1–3, pp 581–591 | Cite as

Performance of an internal-loop airlift bioreactor for treatment of hexane-contaminated air

  • Fernando J. S. Oliveira
  • Francisca P. de FrançaEmail author
Article

Abstract

Hexane is a toxic volatile organic compound that is quite abundant in gas emissions from chemical industries and printing press and painting centers, and it is necessary to treat these airstreams before they discharge into the atmosphere. This article presents a treatment for hexane-contaminated air in steady-state conditions using an internal-loop airlift bioreactor inoculated with a Pseudomonas aeruginosa strain. Bioprocesses were conducted at 20-mL/min, a load of 1.26 g/m3 of C6H14, and a temperature of 28°C. The results of hexane removal efficiencies were presented as a function of the inoculum size (approx 0.07 and 0.2 g/L) and cell reuse. Bioprocess monitoring comprises quantification of the biomass, the surface tension of the medium, and the hexane concentration in the fermentation medium as well as in the inlet and outlet airstreams. The steady-state results suggest that the variation in inoculum size from 0.07 to 0.2 g/L promotes hexane abatement from the influent from 65 to 85%, respectively. Total hydrocarbon removal from the waste gas was achieved during experiments conducted using reused cells at an initial microbial concentration of 0.2 g/L.

Index Entries

Air treatment hydrocarbons hexane biodegradation airlift bioreactor Pseudomonas aeruginosa 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ayres, J. G. (1996), Chem. Ind. 21, 827–830.Google Scholar
  2. 2.
    Devinny, J. S., Deshusses, M. A., and Webster, T. S. (1999), Biofiltration for Air Pollution Control, Lewis Publishers, Boca Raton, FL.Google Scholar
  3. 3.
    Hardman, J. G., Lee, E. L., and Gilman, A. G. (1999), Goodman and Gilman’s the Pharmacological Basis of Therapeutics, McGraw Hill, New York.Google Scholar
  4. 4.
    Arulneyam, D. and Swaminathan, T. (2000), Bioprocess. Eng. 22, 63–67.CrossRefGoogle Scholar
  5. 5.
    Lu, C., Lin, M., and Wey, I. (2001), J. Environ. Eng. 127(10), 946–951.CrossRefGoogle Scholar
  6. 6.
    Popov, V. O. and Bezborodov, A. M. (1999), Appl. Biochem. Microbiol. 35(5), 570–577.Google Scholar
  7. 7.
    Vanderberg-Twary, L., Steenhoudt, K., Travis, B. J, Hannes, J. L., Foreman, M., and Brainard, J. R. (1997), Biotechnol. Bioeng. 55(1), 163–169.CrossRefGoogle Scholar
  8. 8.
    Deshusses, M. A. (1997), Curr. Opin. Biotechnol. 8, 335–339.PubMedCrossRefGoogle Scholar
  9. 9.
    Iida, M., Yamamoto, H., and Sobue, I. (1973), Igaku No Ayumi 84, 199–201.Google Scholar
  10. 10.
    Oliveira, F. J. S. and deFrança, F. P (2003), Innovacion. 15(2), 25–31.Google Scholar
  11. 11.
    Balba, M. T., Al-Awadhi, N., and Al-Daher, R. (1998), J. Microbiol. Methods 32, 155–164.CrossRefGoogle Scholar
  12. 12.
    Cunha C. D. and Leite S. G. F. (2000), Braz. J. Microbiol. 31(1), 2–9.CrossRefGoogle Scholar
  13. 13.
    Mulligan, C. N., Yong, R. N., and Gibbs, B. F. (2001), Eng. Geol. 60, 371–380.CrossRefGoogle Scholar
  14. 14.
    Alexander, M. (1994), Biodegradation and Bioremediation, Academic, New York.Google Scholar
  15. 15.
    Spigno, G., Pagella, C., Fumi, M. D., Molteni, R., and deFaveri, D. M. (2003), Chem. Eng. J. 58, 739–746.CrossRefGoogle Scholar
  16. 16.
    Kastner, J. R., Thompson, D. N., and Cherry, R. S. (1999), Enzyme Microb. Technol. 24, 104–110.CrossRefGoogle Scholar
  17. 17.
    Kibazohi, O., Yun, S., and Anderson, W. A. (2004), World J. Microb. Biotechnol. 20, 337–343.CrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2005

Authors and Affiliations

  • Fernando J. S. Oliveira
    • 1
  • Francisca P. de França
    • 1
    Email author
  1. 1.Departamento de Engenharia Bioquímica, Escola de Química, Centro de TecnologiaUniversidade Federal do Rio de JaneiroRio de Janeiro, RJBrazil

Personalised recommendations