Advertisement

Applied Biochemistry and Biotechnology

, Volume 122, Issue 1–3, pp 553–560 | Cite as

Optimization of alkaline transesterification of soybean oil and castor oil for biodiesel production

  • Débora de OliveiraEmail author
  • Marco Di Luccio
  • Carina Faccio
  • Clarissa Dalla Rosa
  • João Paulo Bender
  • Nádia Lipke
  • Cristiana Amroginski
  • Cláudio Dariva
  • José Vladimir de Oliveira
Article

Abstract

This article reports experimental data on the production of fatty acid ethyl esters from refined and degummed soybean oil and castor oil using NaOH as catalyst. The variables investigated were temperature (30–70°C), reaction time (1–3 h), catalyst concentration (0.5–1.5 w/wt%), and oil-to-ethanol molar ratio (1:3–1:9). The effects of process variables on the reaction conversion as well as the optimum experimental conditions are presented. The results show that conversions >95% were achieved for all systems investigated. In general, an increase in reaction temperature, reaction time, and in oil-to-ethanol molar ratio led to an enhancement in reaction conversion, whereas an opposite trend was verified with respect to catalyst concentration.

Index Entries

Alcoholysis soybean oil castor oil alkaline catalyst biodiesel 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Fukuda, H., Kondo, A., and Noda, H. (2001), J. Biosci. Bioeng. 92, 405–416.PubMedCrossRefGoogle Scholar
  2. 2.
    Ma, F. and Hanna, M. A. (1999), Bioresour. Technol. 70, 1–15.CrossRefGoogle Scholar
  3. 3.
    Srivastava, A. and Prasad, R. (2000), Renewable Sustainable Energy Rev. 4, 111–133.CrossRefGoogle Scholar
  4. 4.
    Altin, R., Çetinkaya, S., and Yucesu, H. S. (2001), Energy Conversion Manage. 42, 529–538.CrossRefGoogle Scholar
  5. 5.
    Zhang, Y., Dubé, M. A., McLean, D. D., and Kates, M. (2003), Bioresour. Technol. 89, 1–16.PubMedCrossRefGoogle Scholar
  6. 6.
    McCormick, R. L., Graboski, M. S., Alleman, T. L., and Herring, A. M. (2001), Environ. Sci. Technol. 35, 1742–1747.PubMedCrossRefGoogle Scholar
  7. 7.
    Al Saadi, A. N. and Jeffreys, G. V. (1981), AIChE J. 27, 754–772.CrossRefGoogle Scholar
  8. 8.
    Iso, M., Chen, B., Eguchi, M., Kudo, T., and Shrestha, S. (2001), J. Mol. Catal. B 16, 53–58.CrossRefGoogle Scholar
  9. 9.
    Wright, H. J., Segur, J. B., Clarck, H. V., Coburn, S. K., Langdon, E. E., and DuPuis, R. N. (1944), Oil Soap 21, 145–148.CrossRefGoogle Scholar
  10. 10.
    Ma, F., Clements, L. D., and Hanna, M. A. (1998), Trans. ASAE 41, 1261–1264.Google Scholar
  11. 11.
    Alcantara, R., Amores, J., Canoira, L., Fidalgo, E., Franco, M. J., and Navarro, A. (2000), Biomass Bioenergy 18, 515–527.CrossRefGoogle Scholar
  12. 12.
    Freedman, B., Pryde, E. H., and Mounts, T. L. (1984), J. Am. Oil Chem. Soc. 61, 1638–1643.CrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2005

Authors and Affiliations

  • Débora de Oliveira
    • 1
    Email author
  • Marco Di Luccio
    • 1
  • Carina Faccio
    • 1
  • Clarissa Dalla Rosa
    • 1
  • João Paulo Bender
    • 1
  • Nádia Lipke
    • 1
  • Cristiana Amroginski
    • 1
  • Cláudio Dariva
    • 1
  • José Vladimir de Oliveira
    • 1
  1. 1.Department of Food EngineeringURI, Campus de ErechimBrazil

Personalised recommendations