Advertisement

Applied Biochemistry and Biotechnology

, Volume 122, Issue 1–3, pp 541–552 | Cite as

Enhancing cellulase foam fractionation with addition of surfactant

  • Vorakan Burapatana
  • Ales Prokop
  • Robert D. Tanner
Article

Abstract

Foam fractionation cannot be used to recover cellulase from an aerated water solution effectively because cellulase by itself can produce only a small amount of foam. The addition of a surfactant can, however, increase the foamate volume and enhance the concentration of cellulase. We studied three detergents individually added to a 200 mg/L cellulase solution to promote foaming. These detergents were anionic, cationic, and nonionic surfactants, respectively. Although contributing to foam production, it was observed that nonionic surfactant (Pluronic F-68) barely concentrated cellulase, leaving the enrichment ratio unchanged, near 1. With anionic surfactant, sodium dedecyl sulfate, and cationic surfactant, cetyltrimethylammonium bromide (CTAB), the enrichment ratio became much larger, but cellulase denaturation occurred, reducing the activity of the enzyme. When CTAB was used to help foam cellulase, β-cyclodextrin was subsequently added to the foamate to help restore the enzyme activity.

Index Entries

Foam fractionation surfactant cellulase cyclodextrin denaturation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

  1. 1.
    Johansson, G. and Reczey, K. (1998), J. Chromatogr B 711(1–2), 161–172.Google Scholar
  2. 2.
    London, M., Cohen, M., and Hudson, P. B. (1954), Biochim. Biophys. Acta 13, 111–120.PubMedCrossRefGoogle Scholar
  3. 3.
    Schnepf, R. W. and Gaden, E. L. (1959), J. Biochem. Microbiol. Technol. Eng. 1(1), 1–8.CrossRefGoogle Scholar
  4. 4.
    Suzuki, A., Yasuhara, K., Seki, H., and Maruyama, H. (2002), J. Colloid Interface Sci. 253(2), 402–408.PubMedCrossRefGoogle Scholar
  5. 5.
    Clarkson, J. R., Cui, Z. F., and Darton, R. C. (1999), J. Colloid Interface Sci. 215(2), 323–332.PubMedCrossRefGoogle Scholar
  6. 6.
    Clarkson, J. R., Cui, Z. F., and Darton, R. C. (1999), J. Colloid Interface Sci. 215(2), 333–338.PubMedCrossRefGoogle Scholar
  7. 7.
    Chi, E. Y., Krishnan, S., Randolph, T. W., and Carpenter, J. F. (2003), Pharma. Res. 20(9), 1325–1336.CrossRefGoogle Scholar
  8. 8.
    Randolph, T. W., and Jones, L. S. (2002), in Rational Design of Stable Protein Formulations, J. F. Carpenter and M. L. Manning, eds., Kluwer Academic/Plenum, New York, pp. 159–175.Google Scholar
  9. 9.
    Middelberg, A. R. (2002), Trends Biotechnol. 20(10), 437–443.PubMedCrossRefGoogle Scholar
  10. 10.
    Clark, E. D. B. (2001), Curr. Opin. Biotechnol. 12(2), 202–207.PubMedCrossRefGoogle Scholar
  11. 11.
    Voet, D., Voet, J. G., and Pratt, C. W. (1999), Fundamentals of Biochemistry, John Wiley & Sons, New York, pp. 154–157.Google Scholar
  12. 12.
    Rozema, D. and Gellman, S. H. (1995), J. Am. Chem. Soc. 117(8), 2373–2374.CrossRefGoogle Scholar
  13. 13.
    Machida, S., Ogawa, S., Shi, X. H., Takaha, T., Fujii, K., and Hayashi, K., (2000), FEBS Lett. 486(2), 131–135.PubMedCrossRefGoogle Scholar
  14. 14.
    Rozema, D. and Gellman, S. H. (1996), Biochemistry 35(49), 15,760–15,771.CrossRefGoogle Scholar
  15. 15.
    Sundari, C.S., Raman, B., and Balasubramanian, D. (1999), FEBS Lett. 443(2), 215–219.CrossRefGoogle Scholar
  16. 16.
    Kuboi, R., Mawatari, T., and Yoshimoto, M. (2000), J. Biosci. Bioeng. 90(1), 14–19.PubMedGoogle Scholar
  17. 17.
    Dong, X. Y., Shi, J. H., and Sun, Y. (2002), Biotechnol. Prog. 18(3), 663–665.PubMedCrossRefGoogle Scholar
  18. 18.
    Daugherty, D. L., Rozema, D., Hanson, P. E., and Gellman, S. H. (1998), J. Biol. Chem. 273(51), 33,961–33,971.CrossRefGoogle Scholar
  19. 19.
    Couthon, F., Clottes, E., and Vial, C. (1996), Biochem. Biophys. Res. Comm. 227(3), 854–860.PubMedCrossRefGoogle Scholar
  20. 20.
    Nath, D. and Roa, M. (2001), Eur. J. Biochem. 268, 5471–5478.PubMedCrossRefGoogle Scholar
  21. 21.
    Kim, C. S. and Lee, E. K. (2000), Process Biochem. 36(1–2), 111–117.CrossRefGoogle Scholar
  22. 22.
    Mandels, M., Anderotti, R., and Roche, C. (1976), Biotechnol. Bioeng. Symp. 6, 21–33.PubMedGoogle Scholar
  23. 23.
    Almin, K. and Eriksson, K. (1968), Arch. Biochem. Biophys. 124(129).Google Scholar
  24. 24.
    Loha, V., Prokop, A., Du, L. P., and Tanner, R. D. (1999), Appl. Biochem. Biotechnol. 77–9, 701–712.CrossRefGoogle Scholar
  25. 25.
    Brown, A.K., Kaul, A., and Varley, J. (1999), Biotechnol. Bioeng. 62(3), 278–290.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2005

Authors and Affiliations

  • Vorakan Burapatana
    • 1
  • Ales Prokop
    • 1
  • Robert D. Tanner
    • 1
  1. 1.Department of Chemical EngineeringVanderbilt UniversityNashville

Personalised recommendations