Applied Biochemistry and Biotechnology

, Volume 121, Issue 1–3, pp 311–319 | Cite as

High-yield bacillus subtilis protease production by solid-state fermentation

  • Valeria F. Soares
  • Leda R. Castilho
  • Elba P. S. Bon
  • Denise M. G. Freire


A Bacillus subtilis isolate was shown to be able to produce extracellular protease in solid-state fermentations (SSF) using soy cake as culture medium. A significant effect of inoculum concentration and physiological age on protease production was observed. Maximum activities were obtained for inocula consisting of exponentially growing cells at inoculum concentrations in the range of 0.7–2.0 mg g−1. A comparative study on the influence of cultivation temperature and initial medium pH on protease production in SSF and in submerged fermentation (SF) revealed that in SSF a broader pH range (5–10), but the same optimum temperature (37°C), is obtained when compared to SF. A kinetic study showed that enzyme production is associated with bacterial growth and that enzyme inactivation begins before biomass reaches a maximum level for both SF and SSF. Maximum protease activity and productivity were 960 U g−1 and 15.4 U g−1 h−1 for SSF, and 12 U mL−1 and 1.3 U mL−1 h−1 for SF. When SSF protease activity was expressed by volume of enzyme extract, the enzyme level was 10-fold higher and the enzyme productivity 45% higher than in SF. These results indicate that this bacterial strain shows a high biotechnological potential for protease production in solid-state fermentation.

Index Entries

Bacillus subtilis protease solid-state fermentation submerged fermentation soy cake 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Romero, F. J., García, L. A., Salas, J. A., Díaz, M., and Quirós, L. M. (2001), Process Biochem. 36, 507–515.CrossRefGoogle Scholar
  2. 2.
    Singh, J., Batra, N., and Sobti, R. C. (2001), Process Biochem. 36, 781–785.CrossRefGoogle Scholar
  3. 3.
    Mitchell, D. A., Berovic, M., and Krieger, N. (2002), Biotechnol. Ann. Rev. 8, 183–225.CrossRefGoogle Scholar
  4. 4.
    Germano, S., Pandey, A., Osaku, C. A., Rocha, S. N., and Soccol, C. R. (2003), Enzyme Microb. Technol. 32, 246–251.CrossRefGoogle Scholar
  5. 5.
    Yang, S. and Wang, J. (1999), Bot. Bull. Acad. Sin. 40, 259–265.Google Scholar
  6. 6.
    Pandey, A., Soccol, C. R., and Mitchell, D. (2000), Process Biochem. 35, 1153–1169.CrossRefGoogle Scholar
  7. 7.
    Uyar, F. and Baysal, Z. (2004), Process Biochem. 39, 1893–1898.CrossRefGoogle Scholar
  8. 8.
    Freire, D. M. G. (1996), PhD thesis, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.Google Scholar
  9. 9.
    Soares, V. F., Castilho, L. R., Bon, E. P. S., and Freire, D. M. G. (2003), In Proceedings of XIV Simpósio Nacional de Fermentações, Florianópolis, Brazil, pp. 1–6.Google Scholar
  10. 10.
    Charney, J. and Tomarelli, R. M. (1947), J. Biol. Chem. 171, 501–505.Google Scholar
  11. 11.
    Gombert, A. K., Pinto, A. L., Castilho, L. R., and Freire, D. M. G. (1999), Process Biochem. 35, 85–90.CrossRefGoogle Scholar
  12. 12.
    Agrawal, D., Patidar, P., Banerjee, T., and Patil, S. (2003), Process Biochem. 39, 977–981.CrossRefGoogle Scholar
  13. 13.
    Chu, I. M., Lee C., and Li, T. S. (1992), Enzyme Microb. Technol. 14, 755–761.CrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2005

Authors and Affiliations

  • Valeria F. Soares
    • 1
  • Leda R. Castilho
    • 2
  • Elba P. S. Bon
    • 1
  • Denise M. G. Freire
    • 1
  1. 1.Department of Biochemistry, Institute of ChemistryFederal University of Rio de JaneiroBrazil
  2. 2.Chemical Engineering ProgramCOPPE, Federal University of Rio de JaneiroBrazil

Personalised recommendations