Skip to main content
Log in

β-Glucosidase production by Trichoderma reesei

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The hydrolysis of cellulose to the water-soluble products cellobiose and glucose is achieved via synergistic action of cellulolytic proteins. The three types of enzymes involved in this process are endoglucanases, cellobiohydrolases, and β-glucosidases. One of the best fungal cellulase producers is Trichoderma reesei RUT C30. However, the amount of β-glucosidases secreted by this fungus is insufficient for effective cellulose conversion. We investigated the production of cellulases and β-glucosidases in shake-flask cultures by applying three pH-controlling strategies: (1) the pH of the production medium was adjusted to 5.8 after the addition of seed culture with no additional pH adjustment performed, (2) the pH was adjusted to 6.0 daily, and (3) the pH was maintained at 6.0 by the addition of Tris-maleate buffer to the growth medium. Different carbon sources—Solka Floc 200, glucose, lactose, and sorbitol—were added to standard Mandels nutrients. The lowest β-glucosidase activities were obtained when no pH adjustment was done regardless of the carbon source employed. Somewhat higher levels of β-glucosidase were measured in the culture filtrates when daily pH adjustment was carried out. The effect of buffering the culture medium on β-glucosidase liberation was most prominent when a carbon source inducing the production of other cellulases was applied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Goodwin, T. W., and Mercer, E. I. (1983), in Introduction to Plant Biochemistry, Pergamon, Exeter, UK, pp. 55–91.

    Google Scholar 

  2. Marsden, W. L. and Gray, P. P. (1986), CRC Crit. Rev. Biotechnol. 3, 235–276.

    Article  CAS  Google Scholar 

  3. Hendy, N. A., Wilke, C. R., and Blanch, H. W. (1984), Enzyme Microb. Technol. 6, 73–77.

    Article  CAS  Google Scholar 

  4. Velkovska, S., Marten, M. R., and Ollis, D. F. (1997), J. Biotechnol. 54, 83–94.

    Article  CAS  Google Scholar 

  5. Chahal, D. S., McGuire, S., Pikor, H., and Noble, G. (1982), Biomass 2, 127–137.

    Article  CAS  Google Scholar 

  6. Wyman, C. E. (1994), Bioresour. Technol. 50, 3–16.

    Article  CAS  Google Scholar 

  7. Mandels, M. and Weber, J. (1969), Adv. Chem. Ser. 95, 391–414.

    CAS  Google Scholar 

  8. Persson, I., Tjerneld, F., and Hägerdal, B. H. (1991), Process. Biochem. 26, 65–74.

    Article  CAS  Google Scholar 

  9. Montenecourt, B. S. and Eveleight, D. E. (1979), Adv. Chem. Ser. 181, 289–301.

    Article  Google Scholar 

  10. Saddler, J. N. (1982), Enzyme Microb. Technol. 4, 414–418.

    Article  CAS  Google Scholar 

  11. Wood, T. M. and Campayo, G. V. (1990), Biodegradation 1, 147–161.

    Article  CAS  Google Scholar 

  12. Stockton, B. C., Mitchell, D. J., Grohmann, K., and Himmel, M. E. (1991), Biotechnol. Lett. 13, 57–62.

    Article  CAS  Google Scholar 

  13. Sternberg, D. (1976), Biotechnol. Bioeng. Symp. 6, 35–53.

    CAS  Google Scholar 

  14. Hayward, T. K., Hamilton, J., Tholudur, A., and McMillan, J. D. (2000), Appl. Biochem. Biotechnol. 84–86, 859–874.

    Article  Google Scholar 

  15. Tangnu, K. S., Blanch, H. W., and Charles, R. W. (1981), Biotechnol. Bioeng. 23, 1837–1849.

    Article  CAS  Google Scholar 

  16. Juhasz, T., Szengyel, Z., Szijarto, N., and Reczey, K. (2003), Appl. Biochem. Biotechnol. 113–116, 201–211.

    Google Scholar 

  17. Mandels, M. and Weber, J. (1969), Adv. Chem. Ser. 95, 391–414.

    CAS  Google Scholar 

  18. Stoscheck, C. M. (1990), Methods Enzymol. 182, 50–69.

    CAS  Google Scholar 

  19. Mandels, M., Andreotti, R., and Roche, C. (1976), Biotechnol. Bioeng. Symp. 6, 21–33.

    CAS  Google Scholar 

  20. Bailey, M. J. (1981), Biotechnol. Lett. 3, 695–700.

    Article  CAS  Google Scholar 

  21. Berghem, L. E. E. and Petterson, L. G. (1976), Eur. J. Biochem. 46, 295–305.

    Article  Google Scholar 

  22. Ghose, T. K. (1987), Pure Appl. Chem. 59, 257–268.

    CAS  Google Scholar 

  23. Domingues, F. C., Querioz, J. A., Cabral, J. M. S., and Fonseca, L. P. (2001), Biotechnol. Lett. 23, 771–775.

    Article  CAS  Google Scholar 

  24. Morikawa, Y., Ohashi, T., Mantani, O., and Okada, H. (1995), Appl. Microbiol. Biotechnol. 44, 106–111.

    CAS  Google Scholar 

  25. Kubicek, C. P. and Penttilä, M. E. (1998), in Trichoderma and Gliocladium, Enzymes, Biological Control and Commercial Applications, vol. 2, Harman, G. E. and Kubicek, C. P., eds., Taylor & Francis, Bristol, UK, pp. 49–67.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tamás Juhász.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Juhász, T., Egyházi, A. & Réczey, K. β-Glucosidase production by Trichoderma reesei . Appl Biochem Biotechnol 121, 243–254 (2005). https://doi.org/10.1385/ABAB:121:1-3:0243

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/ABAB:121:1-3:0243

Index Entries

Navigation