Skip to main content
Log in

Sugarcane bagasse pulps

Biobleaching with commercial cartazyme HS and with bacillus pumilus xylanase

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Organosolv (ethanol/water and acetosolv) pulps were treated with Bacillus pumilus xylanase for 4, 8, and 12 h and compared with commercial Cartazyme HS xylanase-treated pulps. Treatment of ethanol/water pulps with B. pumilus xylanase increased viscosity by 40% in 8 h of treatment compared with pulps treated without enzyme. However, acetosolv pulps treated with B. pumilus xylanase lost viscosity. Ethanol/water pulps treated with Cartazyme had a viscosity of 18.5 cP in 4 h of treatment. In the acetosolv pulps treated with commercial enzyme, the loss of viscosity was 20% compared with pulps treated without enzyme. Ethanol/water pulps treated with B. pumilus and Cartazyme had similar effects: a 44% reduction in kappa number for pulps treated with enzyme followed by alkaline extraction compared with pulps treated with alkaline extraction. In acetosolv pulps treated with B. pumilus, the kappa number was from 12 to 18, compared with pulps treated without enzyme, which had a 40% reduction in 4 and 12 h and a 60% reduction in 8 h. Cartazyme-treated acetosolv pulps had a kappa number of 14 in 4 and 8 h of treatment. For 12 h of treatment, the kappa number was 8. Fourier transform infrared spectra of the pulps showed that enzyme-treated pulps had changes in the 1000 cm−1 absorption owing to a C-O bond present in esters. Using principal component analysis, it is possible to differentiate the unbleached pulps and enzyme-treated pulps.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bajpai, P. (1999), Biotechnol. Prog. 15 (2), 147–157.

    Article  CAS  Google Scholar 

  2. Senior, D. J., Mayers, P. R., and Saddler, J. N. (1991), Biotechnol. Bioeng. 37, 274–279.

    Article  CAS  Google Scholar 

  3. Viikari, L., Kantelinen, A., Buchert, J. and Puls, J. (1994), Appl. Microbiol. Biotechnol. 41, 124–129.

    CAS  Google Scholar 

  4. Kulkarni, N. and Rao, M. (1996), J. Biotechnol. 51, 167–173.

    Article  CAS  Google Scholar 

  5. Sholam, Y., Schwartz, Z., Khasin, A., Gat, O., Zosim, Z., and Rosemberg, E. (1992), Biodegradation 3, 207–218.

    Article  Google Scholar 

  6. Bim, M. A. and Franco, T. T. (2000), J. Chromatogr. 743, 349–356.

    Article  CAS  Google Scholar 

  7. Dhillon, A., Gupta, J. K., Jauhari, B. M., and Khanna, S. (1999), Bioresour. Technol. 73, 273–277.

    Article  Google Scholar 

  8. Bajpai, P., Bhardwaj, N. K., Bajpai, P. K., and Jauhari, M. B. (1994), J. Biotechnol. 38, 1–6.

    Article  CAS  Google Scholar 

  9. Hinman, R. L. (1994), Chemtech 24(6), 45–48.

    Google Scholar 

  10. Wizani, N., Esterbauer, H., Steiner, W., and Gomes, J. (1990), A patent 1030/90.

  11. Duarte, M. C. T., Portugal, E. P., Ponezi, A. N., Bim, M. A., and Tagliari, C. V. (1999), Bioresour. Technol. 68, 49–53.

    Article  CAS  Google Scholar 

  12. Deshpande, V., Hinge, J., and Rao, M. (1990), Biochem. Biophys. Acta 1041, 172–177.

    CAS  Google Scholar 

  13. Benar, P. (1992), Ms thesis, UNICAMP/Instituto de Química, Campinas-SP, Brazil.

    Google Scholar 

  14. Gonçalves, A. R. and Ruzene, S. (2003), Appl. Biochem. Biotechnol. 105–108, 769–774.

    Google Scholar 

  15. Bailey, M. J., Biely, P., and Pourtanen, K. (1992), J. Biotechnol. 23, 257–270.

    Article  CAS  Google Scholar 

  16. TAPPI. (1985), TAPPI Standard Methods, T. 236 cm-85.

  17. TAPPI. (1992), TAPPI Standard Methods, T. 230 om-82.

  18. Rocha, G. J. M. (2000), PhD thesis, São Carlos/Universidade de São Paulo, Brazil.

    Google Scholar 

  19. Faix, O., Böttcher, J. H., and Berlelt, E. (1992), Using FTIR spectroscopy and FTIR microscopy for the examination of wood and wood tissue, in 8th International Conference in Fourier Transform Spectroscopy SPIE 1575, Heise, M., Korte, E. H., and Siesler, H. W., eds., The International Society for Optical Engineering, San Diego, CA, pp. 428–430.

    Google Scholar 

  20. Morohoshi, N. (1991), in Wood and Cellulosic Chemistry, Hon, D. N. S. and Shiraishi, N., eds., Marcel Dekker, New York, pp. 331–392.

    Google Scholar 

  21. Scarminio, I. S. and Bruns, R. E. (1989), Trends Anal. Chem. 8, 326–327.

    Article  Google Scholar 

  22. Viikari, L., Tenkanen, M., Ratto, M., Bucert, J., Kantelinem, A., Bailey, M., Sundquist, J., and Linko, M. (1992). In Biotechnology in Pulp and Paper Industry, Kuwahara, M. and Shimada, M. (eds.), UNI Publishers, Toyko, Japan, pp. 101–106.

    Google Scholar 

  23. Da Silva, R., Yim, D. K., and Park, Y. K. (1994), J. Ferment. Bioeng. 77, 109–111.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adilson R. Gonçalves.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moriya, R.Y., Gonçalves, A.R. & Duarte, M.C.T. Sugarcane bagasse pulps. Appl Biochem Biotechnol 121, 171–181 (2005). https://doi.org/10.1385/ABAB:121:1-3:0171

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/ABAB:121:1-3:0171

Index Entries

Navigation