Production of cellulase/β-glucosidase by the mixed fungi culture of Trichoderma reesei and Aspergillus phoenicis on dairy manure



A cellulase production process was developed by growing the fungi Trichoderma reesei and Aspergillus phoenicis on dairy manure. T. reesei produced a high total cellulase titer (1.7 filter paper units [FPU]/mL, filter paper activity) in medium containing 10 g/L of manure (dry basis [w/w]), 2 g/L KH2PO4, 2 mL/L of Tween-80, and 2mg/L of CoCl2. However, β-glucosidase activity in the T. reesei-enzyme system was very low. T. reesei was then cocultured with A. phoenicis to enhance the β-glucosidase level. The mixed culture resulted in a relatively high level of total cellulase (1.54 FPU/mL) and β-glucosidase (0.64 IU/mL). The ratio of β-glucosidase activity to filter paper activity was 0.41, suitable for hydrolyzing manure cellulose. The crude enzyme broth from the mixed culture was used for hydrolyzing the manure cellulose, and the produced glucose was significantly (p<0.01) higher than levels obtained by using the commercial enzyme or the enzyme broth of the pure culture T. reesei.

Index Entries

Dairy manure cellulase β-glucosidase Trichoderma reesei Aspergillus phoenicis 


  1. 1.
    Fontenot, J. P., Smith, L. W., and Sutton, A. L. (1983), J. Anim. Sci. 57(Suppl. 2), 221.Google Scholar
  2. 2.
    Moller, H. B., Sommer, S. G., and Ahring, B. K. (2002), Bioresour. Technol. 85, 189–196.CrossRefGoogle Scholar
  3. 3.
    Sun, Y. and Cheng, J. (2002), Bioresour. Technol. 83, 1–11.CrossRefGoogle Scholar
  4. 4.
    von Sivers, M. and Zacchi, G. (1995), Bioresour. Technol. 51, 43–52.CrossRefGoogle Scholar
  5. 5.
    Wen, Z., Liao, W., and Chen, S. (2004), Bioresour. Technol. 91, 31–39.CrossRefGoogle Scholar
  6. 6.
    Duff, S. J. B. and Murray, W. D. (1996), Bioresour. Technol. 55, 1–33.CrossRefGoogle Scholar
  7. 7.
    Reczey, K., Szengyel, Z., Eklund, R., and Zacchi, G. (1996), Bioresour. Technol. 57, 25–30.CrossRefGoogle Scholar
  8. 8.
    Ju, L. K. and Afolabi, O. A. (1999), Biotechnol. Prog. 15, 91–97.CrossRefGoogle Scholar
  9. 9.
    Rajoka, M. I. and Malik, K. A. (1997), Bioresour. Technol. 59, 21–27.CrossRefGoogle Scholar
  10. 10.
    Ogel, Z. B., Yarangumeli, K., Dundar, H., and Ifrij, I. (2001), Enzyme Micro. Technol. 28, 689–695.CrossRefGoogle Scholar
  11. 11.
    Romero, M. D., Aguado, J., Gonzalez, L., and Ladero, M. (1999), Enzyme Micro. Technol. 25, 244–250.CrossRefGoogle Scholar
  12. 12.
    Kalogeris, E., Christakopoulos, P., Katapodis, P., Alexiou, A., Vlachou, S., Kekos, D., and Macris, B. J. (2003), Process Biochem. 38, 1099–1104.CrossRefGoogle Scholar
  13. 13.
    Xia, L. and Cen, P. (1999), Process Biochem. 34, 909–912.CrossRefGoogle Scholar
  14. 14.
    Smits, J. P., Rinzema A., Tramper, J., van Sonsbeek, H. M., and Knol, W. (1996), Appl. Microbol. Biotechnol. 46, 489–496.CrossRefGoogle Scholar
  15. 15.
    Umikalsom, M. S., Ariff, A. B., Shamsuddin, Z. H., Tong, C. C., Hassan, M. A., and Karim, M. I. A. (1997), Appl. Microbiol. Biotechnol. 47, 590–595.CrossRefGoogle Scholar
  16. 16.
    Haddadin, M. S. Y., Abu-Reesh, I. M., Haddadin, F. A. S., and Robinson, R. K. (2001), Biores. Technol. 78, 225–230.CrossRefGoogle Scholar
  17. 17.
    Mandel, M. and Weber, J. (1969), Adv. Chem. Ser. 95, 391–414.CrossRefGoogle Scholar
  18. 18.
    Goering, H.K. and Van Soest, P.J. (1970), in Agricultural Handbook No. 379, Agricultural Research Service, US Department of Agriculture, Washington, DC, pp. 1–20.Google Scholar
  19. 19.
    Eaton, A. D., Clesceri, L. S., and Greengerg, A. E. (1995), Standard Methods for the Examination of Water and Wastewater, 19th Ed., American Public Health Association, Washington, DC.Google Scholar
  20. 20.
    Ghose, T. K. (1987), Pure Appl. Chem. 59, 257–268.Google Scholar
  21. 21.
    Umikalsom, M. S., Ariff, A. B., Zulkifli, H. S., Tong, C. C., Hassan M. A., and Karim, M. I. A. (1997) Bioresour. Technol. 62, 1–9.CrossRefGoogle Scholar
  22. 22.
    Henze, M., Harremoes, P., Jansen, J. L. C., and Arvin, E. (1996). Wastewater Treatment: Biological and Chemical Process, 2nd Ed., Springer, Berlin.Google Scholar
  23. 23.
    Tangnu, S. K., Blanch, H. W., and Wilke, C. R. (1981), Biotechnol. Bioeng. 23, 1837–1849.CrossRefGoogle Scholar
  24. 24.
    Cochet, N. (1991), Enzyme Micro. Technol. 13, 104–109.CrossRefGoogle Scholar
  25. 25.
    Duff, S. J. B., Cooper, D. G., and Fuller, O. M., (1987), Enzyme Micro. Technol. 9, 47–52.CrossRefGoogle Scholar
  26. 26.
    Duenas, R., Tengerdy, R. P., and Gutierrez-Correa, M. (1995), World. J. Microbiol Biotechnol. 11, 333–337.CrossRefGoogle Scholar
  27. 27.
    Gutierrez-Correa, M. and Tengerdy, R. P. (1997), Biotechnol. Lett. 19, 665–667.CrossRefGoogle Scholar
  28. 28.
    Flachner, B., Brumbauer, A., and Reczey, K. (1999), Enzyme Micro. Technol. 24, 362–367.CrossRefGoogle Scholar
  29. 29.
    Gutierrez-Correa, M., Portal, L., Moreno, P., and Tengerdy, R. P. (1999), Bioresour. Technol. 68, 173–178.CrossRefGoogle Scholar
  30. 30.
    Massadeh, M. I., Yusoff, W. M. W., Omar, O., and Kader, J. (2001), Biotechnol. Lett. 23, 1771–1774.CrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2005

Authors and Affiliations

  1. 1.Department of Biological Systems EngineeringWashington State UniversityPullman

Personalised recommendations