Skip to main content
Log in

Construction and evaluation of nagR-nagAa::lux fusion strains in biosensing for salicylic acid derivatives

  • Original Articles
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The NagR protein is a response regulatory protein found in the bacterium Ralstonia sp. U2 that is involved in sensing for salicylic acid and the subsequent induction of the operaon just upstream of its gene. The genes encoded for in this operon are involved in the degradation of salicylic acid. Escherichia coli strain RFM443 carrying a fusion of the Photorhabdus luminesscens luxCDABE operon with the nagR gene and upstream region of the nagAa gene was constructed and characterized with respect to its optimum temperature, its response time and kinetics, and its ability to deterctnumerous benzoic acid derivatives. Although capable of detecting 0.5 mM salicylic acid at any temperature between 28 and 40°C, this E. coli strain, labeled DNT5, showed its greatest relative activity at 30°C, i.e., the temperature at which the largest induction was seen. Furthermore, experiments done with numerous benzoic acid derivatives found the NagR protein to be responsive to only a few of the compounds tested, including salicylic acid and 3-methyl salicylic acid and 3-methyl saliyclic acid, and acetyl salicylic acid was the strongest inducer. The lower limits of detection for these compounds with E. coli strain DNT5 were also established, wit the native inducer, salicylic acid, giving the most sensitive response and detectable down to a concentration of about 2 μM. A second lux fusion plasmid was also constructed and transformed into an NahR background, Pseudomonas putida KCTC1768. Within this strain, NAGK-1768, the supplemental activity of the NahR protein on the nagAn promoter, was shown to extend both the range of chemicals detected and the sensitivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Garcia-Valdes, E., Cozar, E., Rotger, R., Lalucat, J., and Ursing, J. (1988), Appl. Environ. Microbiol. 54, 2478–2485.

    CAS  Google Scholar 

  2. Grund, A. D. and Gunsalus, I. C. (1983), J. Bacteriol. 156, 89–94.

    CAS  Google Scholar 

  3. Kuhm, A. E., Stolz, A., and Knackmuss, H. J. (1991) Biodegradation 2, 115–120.

    Article  CAS  Google Scholar 

  4. Mihelcic, J. R. and Luthy, R. G. (1988), Appl. Environ. Microbiol. 54, 1188–1198.

    CAS  Google Scholar 

  5. Kiyohara, H., Nagao, K., Kouno, K., and Yano K. (1982), Appl. Environ. Microbiol. 43, 458–461.

    CAS  Google Scholar 

  6. Weissenfels, W. D., Beyer, M., and Klein, J. (1990), Appl. Microbiol. Biotechnol. 32, 479–484.

    Article  CAS  Google Scholar 

  7. Grifoll, M., Selifonov, S. A., Gatlin, C. V., and Chapman, P. J. (1995), Appl. Environ. Microbiol. 61, 3711–3723.

    CAS  Google Scholar 

  8. Heitkamp, M. A., Franklin, W., and Cerniglia, C. E. (1988) Appl. Environ. Microbiol. 54, 2549–2555.

    CAS  Google Scholar 

  9. Schneider, J., Grosser, R., Jayasimhulu, K., Xue, W., and Warshawsky, D. (1996), Appl. Environ. Microbiol. 62, 13–19.

    CAS  Google Scholar 

  10. Stringfellow, W. T. and Aitken, M. D. (1995), Appl. Environ. Microbiol. 61, 357–362.

    CAS  Google Scholar 

  11. Saneseverino, J., Applegate, B. M., King, J. M., and Sayler, G. S. (1993), Appl. Environ. Microbiol. 59, 1931–1937.

    Google Scholar 

  12. Tsuda, M. and Iino, T. (1990), Mol. Gen. Genet. 223, 33–39.

    Article  CAS  Google Scholar 

  13. Yen, K. M. and Gunsalus, I. C. (1985), J. Bacteriol. 162, 1008–1013.

    CAS  Google Scholar 

  14. Zhou, N. Y., Fuenmayor, S. L., and Williams, P. A. (2001), J. Bacteriol. 183, 700–708.

    Article  CAS  Google Scholar 

  15. Yen, K. M. and Serdar, C. M. (1988), Crit. Rev. Microbiol. 15, 247–268.

    Article  CAS  Google Scholar 

  16. Huang, J. Z. and Schell, M. A. (1991), J. Biol. Chem. 266, 10830–8.

    CAS  Google Scholar 

  17. Schell, M. A. (1985), Gene 36, 301–309.

    Article  CAS  Google Scholar 

  18. Schell, M. A. (1986), Proc. Natl. Acad. Sci. USA 83, 369–373.

    Article  CAS  Google Scholar 

  19. Schell, M. A. and Poser, E. F. (1989), J. Bacteriol. 171, 837–846.

    CAS  Google Scholar 

  20. Cebolla, A., Sousa, C., and de Lorenzo, V. (1997), J. Biol. Chem. 272, 3986–3892.

    Article  CAS  Google Scholar 

  21. Schell, M. A. and Wender, P. E. (1986), J. Bacteriol. 166, 9–14.

    CAS  Google Scholar 

  22. You, I. S., Ghosal, D., and Gunsalus, I. C. (1988), J. Bacteriol. 170, 5409–5415.

    CAS  Google Scholar 

  23. Schell, M. A., Brown, P. H., and Raju, S. (1990), J. Biol. Chem. 265, 3844–3850.

    CAS  Google Scholar 

  24. Jones, R. M., Britt-Compton, B., and Williams, P. A. (2003), J. Bacteriol. 185, 5847–5853.

    Article  CAS  Google Scholar 

  25. Van Dyk, T. K. and Rosson, R. A. (1998), in Methods in Molecular Biology: Bioluminecence Methods and Protocols, vol. 102, LaRossa, R. A., ed., Humana, Totowa, NJ, pp. 85–95.

    Google Scholar 

  26. Rogowsky, P. M., Close, T. J., Chimera, J. A., Shaw, J. J., and Kado, C. I. (1987), J. Bacteriol. 169, 5101–5112.

    CAS  Google Scholar 

  27. Burlage, R. S., Sayler, G. S., and Larimer F. (1990), J. Bacteriol. 172, 4749–4757.

    CAS  Google Scholar 

  28. King, J. M. H., DiGrazia, P. M., Applegate, B., Burlage, R., Sanseverino, J., Dunbar, P., Larimer, F., and Sayler, G. S. (1991), Science 249, 778–781.

    Article  Google Scholar 

  29. Heitzer, A., Webb, O. F., Thonnard, J. E., and Sayler, G. S. (1992), Appl. Environ. Microbiol. 58, 1839–1846.

    CAS  Google Scholar 

  30. Fuemayor, S. L., Wild, M., Boyes, A. L., and Williams, P. A. (1998), J. Bacteriol. 180, 2522–2530.

    Google Scholar 

  31. Lee, H. Y., Choi, S. H., and Gu, M. B. (2003), Biotechnol. Bioprocess. Eng. 8, 101–105.

    Article  CAS  Google Scholar 

  32. Mitchell, R. J., Ahn, J. M., and Gu, M. B. (2005), J. Microbiol. Biotech., in press.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Man Bock Gu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mitchell, R.J., Gu, M.B. Construction and evaluation of nagR-nagAa::lux fusion strains in biosensing for salicylic acid derivatives. Appl Biochem Biotechnol 120, 183–197 (2005). https://doi.org/10.1385/ABAB:120:3:183

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/ABAB:120:3:183

Index Entries

Navigation