Skip to main content
Log in

Feasibility of treating swine manure in an anaerobic sequencing batch biofilm reactor with mechanical stirring

  • Original Articles
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Anaerobic sequencing batch reactors containing granular or flocculent biomass have been employed successfully in the treatment of piggery wastewater. However, the studies in which these reactors were employed did not focus specifically on accelerating the hydrolysis step, even though the degradation of this chemical oxygen demand (COD) fraction is likely to be the limiting step in many investigations of this type of wastewater. The mechanically stirred anaerobic sequencing batch biofilm reactor offers an alternative for hastening the hydrolysis step, because mechanical agitation can help to speed up the reduction of particle sizes in the fraction of particulate organic matter. In the present study, a 4.5-L reactor was operated at 30°C, with biomass immobilized on cubic polyurethane foam matrices (1 cm of side) and mechanical stirring provided by three flat-blade turbines (6 cm) at agitation rates varying from 0 to 500 rpm. The reactor was operated to treat diluted swine waste, and mechanical stirring efficiently improved degradation of the suspended COD. The operational data indicate that the reactor remained stable during the testing period. After 2 h of operation at 500 rpm, the suspended COD decreased by about 65% (from 1500 to 380 mg/L). Apparent kinetic constants were also calculated by modified first-order expressions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kennedy, K. J. and Van den Berg, L. (1982), Agric. Wastes 4, 151–158.

    Article  CAS  Google Scholar 

  2. Lomas, J. M., Urbano, C., and Camarero, L. M. (2000), Biomed. Bioeng. 18, 421–430.

    Google Scholar 

  3. Ng, W. J. and Chin, K. K. (1987), Agric. Wastes 20, 157–166.

    CAS  Google Scholar 

  4. Young, P. Y. and Chou, C. Y. (1985), Agric. Wastes 14, 221–239.

    Article  Google Scholar 

  5. Bolte, J. P., Hill, D. T., and Wood, T. H. (1986), Trans. ASAE 29, 543–549.

    CAS  Google Scholar 

  6. Ng, W. J. (1989), Biol. Wastes 28, 39–51.

    Article  CAS  Google Scholar 

  7. Dague, R. R., Habben, C. E., and Pidaparti, S. R. (1992), Water Sci. Technol. 26, 2429–2432.

    CAS  Google Scholar 

  8. Zhang, R. H., Yin, Y., Sung, S., and Dague, R. R. (1995), Trans. ASAE 40, 761–767.

    Google Scholar 

  9. Angenent, L. T., Sung, S., and Raskin, L. (2002), Water Res. 36, 4648–4654.

    Article  PubMed  CAS  Google Scholar 

  10. Bolte, J. P., Hill, D. T., and Wood, T. H. (1986), Trans. ASAE 29, 543–549.

    CAS  Google Scholar 

  11. Levine, A. D., Tchobanaglous, G., and Asano, T. (1985), J. WPCF 57, 805–816.

    CAS  Google Scholar 

  12. Ratusznei, S. M., Rodrigues, J. A. D., Camargo, E. F. M., Zaiat, M., and Borzani, W. (2000), Bioresour. Technol. 75, 127–133.

    Article  CAS  Google Scholar 

  13. Cubas, S. A., Foresti, E., Rodrigues, J. A. D., Ratusznei, S. M., and Zaiat, M. (2004), Biochem. Eng. J. 17, 99–105.

    Article  CAS  Google Scholar 

  14. Ratusznei, S. M., Rodrigues, J. A. D., and Zaiat, M. (2003), Water Sci. Technol. 48, 179–186.

    PubMed  CAS  Google Scholar 

  15. Pinho, S. C., Ratusznei, S. M., Rodrigues, J. A. D., Foresti, E., and Zaiat, M. (2005), Bioresour. Technol. 96, 517–519.

    Article  PubMed  CAS  Google Scholar 

  16. Pinho, S. C., Ratusznei, S. M., Rodrigues, J. A. D., Foresti, E., and Zaiat, M. (2004), Water Res. 38, 4117–4124.

    Article  PubMed  CAS  Google Scholar 

  17. APHA/AWWA/WEF. (1998), Standard Methods for Examination of Water and Wastewater, 20th ed., EUA, Washington, DC.

    Google Scholar 

  18. Peterson, G. L. (1977), Anal. Chem. 83, 346–353.

    CAS  Google Scholar 

  19. Dubois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A., and Smith, F. (1956), Anal. Chem. 28, 350–356.

    Article  CAS  Google Scholar 

  20. Blundi, C. E. and Gadelha, R. F. (2001), in Post-Treatment of Anaerobic Reactors Effluents: Methodological Aspects, Chernicharo, C. A. L., ed., PROSAB, Belo Horizonte, MG, Brazil, pp. 9–17 (in Portuguese).

    Google Scholar 

  21. Postma, T. and Stroes, J. A. P. (1968), Clin. Chim. Acta 22, 569–578.

    Article  PubMed  CAS  Google Scholar 

  22. Alves, M. M., Vieira, J. A. M., Pereira, R. M. A., Pereira, A., and Mota, M. (2001), Water Res. 35, 255–263.

    Article  PubMed  CAS  Google Scholar 

  23. Henze, M. and Harremoës, P. (1983), Water Sci. Technol. 15, 1–101.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcelo Zaiat.

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Pinho, S.C., Fernandes, B.S., Rodrigues, J.A.D. et al. Feasibility of treating swine manure in an anaerobic sequencing batch biofilm reactor with mechanical stirring. Appl Biochem Biotechnol 120, 109–120 (2005). https://doi.org/10.1385/ABAB:120:2:109

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/ABAB:120:2:109

Index Entries

Navigation