Skip to main content
Log in

Comparative study of amidase production by free and immobilized Escherichia coli cells

  • Original Articles
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Escherichia coli NCIM 2569 was evaluated for its potential for amidase production under submerged fermentation. Among the various amide compounds screened, maximum substrate specificity and enzyme yield (8.1 U/mL) were obtained by using 1% acetamide. Fermentation was carried out at 30°C in shake-flask culture under optimized process conditions. A maximum of 0.52 U/mL of intracellular amidase activity was also obtained from cells incubated for 24 h. Studies were also performed to elucidate the optimal conditions (gel concentration, initial biomass, curing period of beads, and calcium ion concentration in the production medium) for immobilization of whole cells. By using E. coli cells entrapped in alginate, a maximum of 6.2 U/mL of enzyme activity was obtained after 12 h of incubation under optimized conditions. Using the immobilized cells, three repeated batches were carried out successfully, and 85% of the initial enzyme activity was retained in the second and third batches. The study indicated that the immobilized E. coli cells offered certain advantages such as less time for maximum enzyme production, more stability in the enzyme production rate, and repeated use of the biocatalyst.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rahim, M. A., Saxena, R. K., Gupta, R., Sheoran, A., and Giri, B. (2003), Process Biochem. 38, 861–866.

    Article  CAS  Google Scholar 

  2. Wyndam, R. C. and Slater, J. H. (1986), J. Gen. Microbiol. 132, 2195–2204.

    Google Scholar 

  3. Maestracci, M., Thiery, A., Bui, K., Arnaud, A., and Galzy, P. (1984), Arch. Microbiol. 138, 315–320.

    Article  CAS  Google Scholar 

  4. Moreau, J. L., Arnaud, A., and Galzy, P. (1994), Microbiol. Res. 149, 47–53.

    CAS  Google Scholar 

  5. Chan, K. N., Chion, C. K., Duran, R., Arnaud, A., and Galzy, P. (1991), Appl. Microbiol. Biotechnol. 36, 205–207.

    Article  Google Scholar 

  6. Shida, T., Hattori, H., Ise, F., and Sekiguchi, J. (2001), J. Biol. Chem. 276, 28,140–28,146.

    Article  CAS  Google Scholar 

  7. Wyborn, N. R., Mills, J., Williams, S. G., and Jones, C. W. (1996), Eur. J. Biochem. 240, 314–322.

    Article  PubMed  CAS  Google Scholar 

  8. Verhaert, R. M. D., Riemens, A. M., Vander-Laan, J. M., Van Duin, J., and Quax, W. J. (1994), Appl. Environ. Microbiol. 63, 3412–3418.

    Google Scholar 

  9. Konstantinovic, M., Marjanovic, N., Ljubijankic, G., and Glisin, V. (1994), Gene 143, 79–83.

    Article  PubMed  CAS  Google Scholar 

  10. Oh, S. J., Kim, Y. C., Park, Y. W., Min, S. Y., Kim, I. S., and Kang, H. S. (1987), Gene 56, 87–97.

    Article  PubMed  CAS  Google Scholar 

  11. Martin, L., Prieto, M. A., Cortes, E., and Garcia, J. L. (1995), FEMS Microbiol. Lett. 125, 287–292.

    Article  PubMed  CAS  Google Scholar 

  12. Hynes, M. J. (1970), J. Bacteriol. 103(2), 487–491.

    Google Scholar 

  13. Maestracci, M., Thiery, A., Arnaud, A., and Galzy, P. (1980), Agric. Biol. Chem. 50, 2337–2341.

    Google Scholar 

  14. Nampoothiri, K. M. and Pandey, A. (1998), Bioresour. Technol. 63, 101–106.

    Article  Google Scholar 

  15. Fukui, S. and Tanaka, A. (1982), Annu. Rev. Microbiol. 36, 145–172.

    Article  PubMed  CAS  Google Scholar 

  16. Imada, A., Igarasi, S., Nakahoma, K., and Isono, M. (1973), J. Gen. Microbiol. 76, 85–99.

    PubMed  CAS  Google Scholar 

  17. Lowry, O. H., Rosenbrough, N. J., Farr, A. L., and Randall, R. J. (1951), J. Biol. Chem. 193, 265–275.

    PubMed  CAS  Google Scholar 

  18. Gosmann, B. and Rehm, H. J. (1986), Appl. Microbiol. Biotechnol. 23, 163–167.

    Article  CAS  Google Scholar 

  19. Grant, G. T., Morris, E. R., Rus, D. A., Smith, P. J. C., and Thom, D. (1973), FEBS Lett. 32, 195–198.

    Article  CAS  Google Scholar 

  20. Lu, W. M. and Chen, W. C. (1988), Proc. Natl. Sci. Coun. vol. 6, 12, pp. 400–406.

    Google Scholar 

  21. Fujimura, M., Kato, J., Tusa, T., and Chibata, I. (1984), Appl. Microbiol. Biotechnol. 19, 79–84.

    Article  CAS  Google Scholar 

  22. Nasri, M., Dhouib, A., Zorguani, F., Kriaa, A., and Ellouz, R. (1989), Biotechnol. Lett. 11, 865–870.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashok Pandey.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Madhavan Nampoothiri, K., Roopesh, K., Chacko, S. et al. Comparative study of amidase production by free and immobilized Escherichia coli cells. Appl Biochem Biotechnol 120, 97–108 (2005). https://doi.org/10.1385/ABAB:120:2:097

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/ABAB:120:2:097

Index Entries

Navigation